GideonPotok commented on code in PR #46041:
URL: https://github.com/apache/spark/pull/46041#discussion_r1567244086


##########
sql/core/src/test/scala/org/apache/spark/sql/CollationStringExpressionsSuite.scala:
##########
@@ -212,6 +212,48 @@ class CollationStringExpressionsSuite
     })
   }
 
+  test("Support StringRPad string expressions with collation") {
+    // Supported collations
+    case class StringRPadTestCase[R](s: String, len: Int, pad: String, c: 
String, result: R)
+    val testCases = Seq(
+      StringRPadTestCase("", 5, " ", "UTF8_BINARY", "     "),
+      StringRPadTestCase("abc", 5, " ", "UNICODE", "abc  "),
+      StringRPadTestCase("Hello", 7, "Wörld", "UTF8_BINARY_LCASE", "HelloWö"), 
// scalastyle:ignore
+      StringRPadTestCase("1234567890", 5, "aaaAAa", "UNICODE_CI", "12345"),
+      StringRPadTestCase("aaAA", 2, " ", "UTF8_BINARY", "aa"),
+      StringRPadTestCase("ÀÃÂĀĂȦÄäåäáâãȻȻȻȻȻǢǼÆ℀℃", 2, "1", "UNICODE", "ÀÃ"), 
// scalastyle:ignore
+      StringRPadTestCase("ĂȦÄäåäá", 20, "ÀÃÂĀĂȦÄäåäáâãȻȻȻȻȻǢǼÆ", 
"UTF8_BINARY_LCASE", "ĂȦÄäåäáÀÃÂĀĂȦÄäåäáâã"), // scalastyle:ignore
+      StringRPadTestCase("aȦÄä", 8, "a1", "UNICODE_CI", "aȦÄäa1a1") // 
scalastyle:ignore
+    )
+    testCases.foreach(t => {
+      val query = s"SELECT rpad(collate('${t.s}', '${t.c}'), ${t.len}, 
'${t.pad}')"
+      // Result & data type
+      checkAnswer(sql(query), Row(t.result))
+      assert(sql(query).schema.fields.head.dataType.sameType(StringType(t.c)))
+      })
+  }
+
+    test("Support StringLPad string expressions with collation") {
+      // Supported collations
+      case class StringLPadTestCase[R](s: String, len: Int, pad: String, c: 
String, result: R)
+      val testCases = Seq(
+        StringLPadTestCase("", 5, " ", "UTF8_BINARY", "     "),
+        StringLPadTestCase("abc", 5, " ", "UNICODE", "  abc"),
+        StringLPadTestCase("Hello", 7, "Wörld", "UTF8_BINARY_LCASE", 
"WöHello"), // scalastyle:ignore
+        StringLPadTestCase("1234567890", 5, "aaaAAa", "UNICODE_CI", "12345"),
+        StringLPadTestCase("aaAA", 2, " ", "UTF8_BINARY", "aa"),
+        StringLPadTestCase("ÀÃÂĀĂȦÄäåäáâãȻȻȻȻȻǢǼÆ℀℃", 2, "1", "UNICODE", 
"ÀÃ"), // scalastyle:ignore
+        StringLPadTestCase("ĂȦÄäåäá", 20, "ÀÃÂĀĂȦÄäåäáâãȻȻȻȻȻǢǼÆ", 
"UTF8_BINARY_LCASE", "ÀÃÂĀĂȦÄäåäáâãĂȦÄäåäá"), // scalastyle:ignore
+        StringLPadTestCase("aȦÄä", 8, "a1", "UNICODE_CI", "a1a1aȦÄä") // 
scalastyle:ignore
+      )
+      testCases.foreach(t => {
+        val query = s"SELECT lpad(collate('${t.s}', '${t.c}'), ${t.len}, 
'${t.pad}')"

Review Comment:
   @uros-db Sure, I think stringExpressions is going to have to change, though, 
need some guidance on how to change it. 
   
    If we do not change it, but I add these tests proposed, 
`assert(sql(query).schema.fields.head.dataType.sameType(StringType(t.c)))` will 
fail for `SELECT lpad('${t.s}', ${t.len}, collate('${t.pad}', '${t.c}'))`. If 
nothing else, a  change to the implementation of `override def dataType: 
DataType = str.dataType` will likely be needed...
   
   I could try to change `dataType` to `= StringTypeAnyCollation` but in my 
experience, that won't work. So `dataType` will have to be defined as `= 
someOperation(str.dataType, pad.dataType)`
   
   When are we planning to implement orders of precedence? Until that is 
implemented, the sort of change we are discussing will be only adding the check 
that  pad and str have the same collation (or else spark will throw an 
exception)... as there is no order of precedence (explicit, implicit, session).



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to