HyukjinKwon commented on code in PR #46996:
URL: https://github.com/apache/spark/pull/46996#discussion_r1642198980


##########
python/pyspark/sql/metrics.py:
##########
@@ -0,0 +1,238 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import abc
+import dataclasses
+from typing import Optional, List, Tuple, Dict, Any, Union, TYPE_CHECKING, 
Sequence
+
+from pyspark.errors import PySparkValueError
+from pyspark.testing.connectutils import have_graphviz
+
+if TYPE_CHECKING:
+    if have_graphviz:
+        import graphviz # type: ignore
+
+
+class ObservedMetrics(abc.ABC):
+    @property
+    @abc.abstractmethod
+    def name(self) -> str:
+        ...
+
+    @property
+    @abc.abstractmethod
+    def pairs(self) -> Dict[str, Any]:
+        ...
+
+    @property
+    @abc.abstractmethod
+    def keys(self) -> List[str]:
+        ...
+
+
+class MetricValue:
+    """The metric values is the Python representation of a plan metric value 
from the JVM.
+    However, it does not have any reference to the original value."""
+
+    def __init__(self, name: str, value: Union[int, float], type: str):
+        self._name = name
+        self._type = type
+        self._value = value
+
+    def __repr__(self) -> str:
+        return f"<{self._name}={self._value} ({self._type})>"
+
+    @property
+    def name(self) -> str:
+        return self._name
+
+    @property
+    def value(self) -> Union[int, float]:
+        return self._value
+
+    @property
+    def metric_type(self) -> str:
+        return self._type
+
+
+class PlanMetrics:
+    """Represents a particular plan node and the associated metrics of this 
node."""
+
+    def __init__(self, name: str, id: int, parent: int, metrics: 
List[MetricValue]):
+        self._name = name
+        self._id = id
+        self._parent_id = parent
+        self._metrics = metrics
+
+    def __repr__(self) -> str:
+        return f"Plan({self._name}: 
{self._id}->{self._parent_id})={self._metrics}"
+
+    @property
+    def name(self) -> str:
+        return self._name
+
+    @property
+    def plan_id(self) -> int:
+        return self._id
+
+    @property
+    def parent_plan_id(self) -> int:
+        return self._parent_id
+
+    @property
+    def metrics(self) -> List[MetricValue]:
+        return self._metrics
+
+
+class CollectedMetrics:
+    @dataclasses.dataclass
+    class Node:
+        id: int
+        name: str = dataclasses.field(default="")
+        metrics: List[MetricValue] = dataclasses.field(default_factory=list)
+        children: List[int] = dataclasses.field(default_factory=list)
+
+    def __init__(self, metrics: List[PlanMetrics]):
+        # Sort the input list
+        self._metrics = sorted(metrics, key=lambda x: x._parent_id, 
reverse=False)
+
+    def extract_graph(self) -> Tuple[int, Dict[int, "CollectedMetrics.Node"]]:
+        """
+        Builds the graph of the query plan. The graph is represented as a 
dictionary where the key
+        is the node ID and the value is the node itself. The root node is the 
node that has no
+        parent.
+
+        Returns
+        -------
+        The root node ID and the graph of all nodes.
+        """
+        all_nodes: Dict[int, CollectedMetrics.Node] = {}
+
+        for m in self._metrics:
+            # Add yourself to the list if you have to.
+            if m.plan_id not in all_nodes:
+                all_nodes[m.plan_id] = CollectedMetrics.Node(m.plan_id, 
m.name, m.metrics)
+            else:
+                all_nodes[m.plan_id].name = m.name
+                all_nodes[m.plan_id].metrics = m.metrics
+
+            # Now check for the parent of this node if it's in
+            if m.parent_plan_id not in all_nodes:
+                all_nodes[m.parent_plan_id] = 
CollectedMetrics.Node(m.parent_plan_id)
+
+            all_nodes[m.parent_plan_id].children.append(m.plan_id)
+
+        # Next step is to find all the root nodes. Root nodes are never used 
in children.
+        # So we start will all node ids as candidates.
+        candidates = set(all_nodes.keys())
+        for k, v in all_nodes.items():
+            for c in v.children:
+                if c in candidates and c != k:
+                    candidates.remove(c)
+
+        assert len(candidates) == 1, f"Expected 1 root node, found 
{len(candidates)}"
+        return candidates.pop(), all_nodes
+
+    def toDot(self, filename: Optional[str] = None, out_format: str = "png") 
-> "graphviz.Digraph":
+        """
+        Converts the collected metrics into a dot representation. Since the 
graphviz Digraph
+        implementation provides the ability to render the result graph 
directory in a
+        notebook, we return the graph object directly.
+
+        If the graphviz package is not available, a PACKAGE_NOT_INSTALLED 
error is raised.
+
+        Parameters
+        ----------
+        filename - str, optional
+            The filename to save the graph to given an output format. The path 
can be
+            relative or absolute.
+
+        out_format - str
+            The output format of the graph. The default is 'png'.
+
+        Returns
+        -------

Review Comment:
   Seems we should document returned instance



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to