Github user feynmanliang commented on a diff in the pull request: https://github.com/apache/spark/pull/8588#discussion_r38775271 --- Diff: mllib/src/main/scala/org/apache/spark/ml/optim/WeightedLeastSquares.scala --- @@ -0,0 +1,295 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.optim + +import com.github.fommil.netlib.LAPACK.{getInstance => lapack} +import org.netlib.util.intW + +import org.apache.spark.Logging +import org.apache.spark.mllib.linalg._ +import org.apache.spark.mllib.linalg.distributed.RowMatrix +import org.apache.spark.rdd.RDD + +/** + * Model fitted by [[WeightedLeastSquares]]. + * @param coefficients model coefficients + * @param intercept model intercept + */ +private[ml] class WeightedLeastSquaresModel( + val coefficients: DenseVector, + val intercept: Double) extends Serializable + +/** + * Weighted least squares solver via normal equation. + * Given weighted observations (w,,i,,, a,,i,,, b,,i,,), we use the following weighted least squares + * formulation: + * + * min,,x,z,, 1/2 sum,,i,, w,,i,, (a,,i,,^T^ x + z - b,,i,,)^2^ / sum,,i,, w_i + * + 1/2 lambda / delta sum,,j,, (sigma,,j,, x,,j,,)^2^, + * + * where lambda is the regularization parameter, and delta and sigma,,j,, are controlled by + * [[standardizeLabel]] and [[standardizeFeatures]], respectively. + * + * Set [[regParam]] to 0.0 and turn off both [[standardizeFeatures]] and [[standardizeLabel]] to + * match R's `lm`. + * Turn on [[standardizeLabel]] to match R's `glmnet`. + * + * @param fitIntercept whether to fit intercept. If false, z is 0.0. + * @param regParam L2 regularization parameter (lambda) + * @param standardizeFeatures whether to standardize features. If true, sigma_,,j,, is the + * population standard deviation of the j-th column of A. Otherwise, + * sigma,,j,, is 1.0. + * @param standardizeLabel whether to standardize label. If true, delta is the population standard + * deviation of the label column b. Otherwise, delta is 1.0. + */ +private[ml] class WeightedLeastSquares( + val fitIntercept: Boolean, + val regParam: Double, + val standardizeFeatures: Boolean, + val standardizeLabel: Boolean) extends Logging with Serializable { + import WeightedLeastSquares._ + + require(regParam >= 0.0, s"regParam cannot be negative: $regParam") + if (regParam == 0.0) { + logWarning("regParam is zero, which might cause numerical instability and overfit.") + } + + /** + * Creates a [[WeightedLeastSquaresModel]] from an RDD of [[Instance]]s. + */ + def fit(instances: RDD[Instance]): WeightedLeastSquaresModel = { + val summary = instances.treeAggregate(new Aggregator)(_.add(_), _.merge(_)) + summary.validate() + logInfo(s"Number of instances: ${summary.count}.") + val triK = summary.triK + val bBar = summary.bBar + val bStd = summary.bStd + val aBar = summary.aBar + val aVar = summary.aVar + val abBar = summary.abBar + val aaBar = summary.aaBar + val aaValues = aaBar.values + + if (fitIntercept) { + // shift centers + // A^T A - aBar aBar^T + RowMatrix.dspr(-1.0, aBar, aaValues) + // A^T b - bBar aBar + BLAS.axpy(-bBar, aBar, abBar) + } + + // add regularization to diagonals + var i = 0 + var j = 2 + while (i < triK) { + var lambda = regParam + if (standardizeFeatures) { + lambda *= aVar(j - 2) + } + if (standardizeLabel) { + // TODO: handle the case when bStd = 0 + lambda /= bStd + } + aaValues(i) += lambda + i += j + j += 1 + } + + val x = choleskySolve(aaBar.values, abBar) + + // compute intercept + val intercept = if (fitIntercept) { + bBar - BLAS.dot(aBar, x) + } else { + 0.0 + } + + new WeightedLeastSquaresModel(x, intercept) + } + + /** + * Solves a symmetric positive definite linear system via Cholesky factorization. + * The input arguments are modified in-place to store the factorization and the solution. + * @param A the upper triangular part of A + * @param bx right-hand side + * @return the solution vector + */ + private def choleskySolve(A: Array[Double], bx: DenseVector): DenseVector = { + val k = bx.size + val info = new intW(0) + lapack.dppsv("U", k, 1, A, bx.values, k, info) + val code = info.`val` + assert(code == 0, s"lapack.dpotrs returned $code.") + bx + } +} + +private[ml] object WeightedLeastSquares { + + /** + * Case class for weighted observations. + * @param w weight, must be positive + * @param a features + * @param b label + */ + case class Instance(w: Double, a: Vector, b: Double) { + require(w >= 0.0, s"Weight cannot be negative: $w.") + } + + /** + * Aggregator to provide necessary summary statistics for solving [[WeightedLeastSquares]]. + */ + // TODO: consolidate aggregates for summary statistics + private class Aggregator extends Serializable { + var initialized: Boolean = false + var k: Int = _ + var count: Long = _ + var triK: Int = _ + private var wSum: Double = _ + private var wwSum: Double = _ + private var bSum: Double = _ + private var bbSum: Double = _ + private var aSum: DenseVector = _ + private var abSum: DenseVector = _ + private var aaSum: DenseVector = _ + + private def init(k: Int): Unit = { + require(k <= 4096, "In order to take the normal equation approach efficiently, " + + s"we set the max number of features to 4096 but got $k.") + this.k = k + triK = k * (k + 1) / 2 + count = 0L + wSum = 0.0 + wwSum = 0.0 + bSum = 0.0 + bbSum = 0.0 + aSum = new DenseVector(Array.ofDim(k)) + abSum = new DenseVector(Array.ofDim(k)) + aaSum = new DenseVector(Array.ofDim(triK)) + initialized = true + } + + /** + * Adds an instance. + */ + def add(instance: Instance): this.type = { + val Instance(w, a, b) = instance + val ak = a.size + if (!initialized) { + init(ak) + initialized = true + } + assert(ak == k, s"Dimension mismatch. Expect vectors of size $k but got $ak.") + count += 1L + wSum += w + wwSum += w * w + bSum += w * b + bbSum += w * b * b + BLAS.axpy(w, a, aSum) + BLAS.axpy(w * b, a, abSum) + RowMatrix.dspr(w, a, aaSum.values) + this + } + + /** + * Merges another [[Aggregator]]. + */ + def merge(other: Aggregator): this.type = { + if (!other.initialized) { + this + } else { + if (!initialized) { --- End diff -- If `this` is not initialized but `other` is, can we just return `other`?
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org