Github user JoshRosen commented on a diff in the pull request: https://github.com/apache/spark/pull/9344#discussion_r43826411 --- Diff: core/src/main/java/org/apache/spark/memory/TaskMemoryManager.java --- @@ -127,23 +127,30 @@ public TaskMemoryManager(MemoryManager memoryManager, long taskAttemptId) { * * @return number of bytes successfully granted (<= N). */ - public long acquireExecutionMemory(long required, MemoryConsumer consumer) { + public long acquireExecutionMemory( + long required, + MemoryMode mode, + MemoryConsumer consumer) { assert(required >= 0); + // If we are allocating Tungsten pages off-heap and receive a request to allocate on-heap + // memory here, then it may not make sense to spill since that would only end up freeing + // off-heap memory. This is subject to change, though, so it may be risky to make this + // optimization now in case we forget to undo it late when making changes. synchronized (this) { - long got = memoryManager.acquireExecutionMemory(required, taskAttemptId); + long got = memoryManager.acquireExecutionMemory(required, taskAttemptId, mode); - // try to release memory from other consumers first, then we can reduce the frequency of + // Try to release memory from other consumers first, then we can reduce the frequency of // spilling, avoid to have too many spilled files. if (got < required) { // Call spill() on other consumers to release memory for (MemoryConsumer c: consumers) { - if (c != null && c != consumer && c.getUsed() > 0) { + if (c != consumer && c.getMemoryUsed(mode) > 0) { --- End diff -- Because we'd end up storing `null` into the consumers map when allocating memory that was not requested by a particular consumer.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org