Github user yinxusen commented on a diff in the pull request: https://github.com/apache/spark/pull/11116#discussion_r53394148 --- Diff: examples/src/main/java/org/apache/spark/examples/mllib/JavaKMeansExample.java --- @@ -0,0 +1,69 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib; + +// $example on$ +import org.apache.spark.api.java.*; +import org.apache.spark.api.java.function.Function; +import org.apache.spark.mllib.clustering.KMeans; +import org.apache.spark.mllib.clustering.KMeansModel; +import org.apache.spark.mllib.linalg.Vector; +import org.apache.spark.mllib.linalg.Vectors; +import org.apache.spark.SparkConf; +// $example off$ + +public class JavaKMeansExample { + public static void main(String[] args) { + + SparkConf conf = new SparkConf().setAppName("JavaKMeansExample"); + JavaSparkContext jsc = new JavaSparkContext(conf); + + // $example on$ + // Load and parse data + String path = "data/mllib/kmeans_data.txt"; + JavaRDD<String> data = jsc.textFile(path); + JavaRDD<Vector> parsedData = data.map( + new Function<String, Vector>() { + public Vector call(String s) { + String[] sarray = s.split(" "); + double[] values = new double[sarray.length]; + for (int i = 0; i < sarray.length; i++) + values[i] = Double.parseDouble(sarray[i]); + return Vectors.dense(values); + } + } + ); + parsedData.cache(); + + // Cluster the data into two classes using KMeans + int numClusters = 2; + int numIterations = 20; + KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations); + + // Evaluate clustering by computing Within Set Sum of Squared Errors + double WSSSE = clusters.computeCost(parsedData.rdd()); + System.out.println("Within Set Sum of Squared Errors = " + WSSSE); + + // Save and load model + clusters.save(jsc.sc(), "myModelPath"); + KMeansModel sameModel = KMeansModel.load(jsc.sc(), "myModelPath"); + // $example off$ + + jsc.stop(); +} --- End diff -- 2-indent
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org