Github user mengxr commented on a diff in the pull request:

    https://github.com/apache/spark/pull/1727#discussion_r15729985
  
    --- Diff: examples/src/main/python/mllib/tree.py ---
    @@ -0,0 +1,129 @@
    +#
    +# Licensed to the Apache Software Foundation (ASF) under one or more
    +# contributor license agreements.  See the NOTICE file distributed with
    +# this work for additional information regarding copyright ownership.
    +# The ASF licenses this file to You under the Apache License, Version 2.0
    +# (the "License"); you may not use this file except in compliance with
    +# the License.  You may obtain a copy of the License at
    +#
    +#    http://www.apache.org/licenses/LICENSE-2.0
    +#
    +# Unless required by applicable law or agreed to in writing, software
    +# distributed under the License is distributed on an "AS IS" BASIS,
    +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    +# See the License for the specific language governing permissions and
    +# limitations under the License.
    +#
    +
    +"""
    +Decision tree classification and regression using MLlib.
    +"""
    +
    +import numpy, os, sys
    +
    +from operator import add
    +
    +from pyspark import SparkContext
    +from pyspark.mllib.regression import LabeledPoint
    +from pyspark.mllib.tree import DecisionTree
    +from pyspark.mllib.util import MLUtils
    +
    +
    +def getAccuracy(dtModel, data):
    +    """
    +    Return accuracy of DecisionTreeModel on the given RDD[LabeledPoint].
    +    """
    +    seqOp = (lambda acc, x: acc + (x[0] == x[1]))
    +    predictions = dtModel.predict(data.map(lambda x: x.features))
    +    truth = data.map(lambda p: p.label)
    +    trainCorrect = predictions.zip(truth).aggregate(0, seqOp, add)
    +    return trainCorrect / (0.0 + data.count())
    +
    +
    +def getMSE(dtModel, data):
    +    """
    +    Return mean squared error (MSE) of DecisionTreeModel on the given
    +    RDD[LabeledPoint].
    +    """
    +    seqOp = (lambda acc, x: acc + numpy.square(x[0] - x[1]))
    +    predictions = dtModel.predict(data.map(lambda x: x.features))
    +    truth = data.map(lambda p: p.label)
    +    trainMSE = predictions.zip(truth).aggregate(0, seqOp, add)
    +    return trainMSE / (0.0 + data.count())
    +
    +
    +def reindexClassLabels(data):
    +    """
    +    Re-index class labels in a dataset to the range {0,...,numClasses-1}.
    +    If all labels in that range already appear at least once,
    +     then the returned RDD is the same one (without a mapping).
    +    Note: If a label simply does not appear in the data,
    +          the index will not include it.
    +          Be aware of this when reindexing subsampled data.
    +    :param data: RDD of LabeledPoint where labels are integer values
    +                 denoting labels for a classification problem.
    +    :return: Pair (reindexedData, origToNewLabels) where
    +             reindexedData is an RDD of LabeledPoint with labels in
    +              the range {0,...,numClasses-1}, and
    +             origToNewLabels is a dictionary mapping original labels
    +              to new labels.
    +    """
    +    # classCounts: class --> # examples in class
    +    classCounts = data.map(lambda x: x.label).countByValue()
    +    numExamples = sum(classCounts.values())
    +    sortedClasses = sorted(classCounts.keys())
    +    numClasses = len(classCounts)
    +    # origToNewLabels: class --> index in 0,...,numClasses-1
    +    if (numClasses < 2):
    +        print >> sys.stderr, \
    +            "Dataset for classification should have at least 2 classes." + 
\
    +            " The given dataset had only %d classes." % numClasses
    +        exit(-1)
    +    origToNewLabels = dict([(sortedClasses[i], i) for i in 
range(0,numClasses)])
    +
    +    print "numClasses = %d" % numClasses
    +    print "Per-class example fractions, counts:"
    +    print "Class\tFrac\tCount"
    +    for c in sortedClasses:
    +        frac = classCounts[c] / (numExamples + 0.0)
    +        print "%g\t%g\t%d" % (c, frac, classCounts[c])
    +
    +    if (sortedClasses[0] == 0 and sortedClasses[-1] == numClasses - 1):
    +        return (data, origToNewLabels)
    +    else:
    +        reindexedData = \
    +            data.map(lambda x: LabeledPoint(origToNewLabels[x.label], 
x.features))
    +        return (reindexedData, origToNewLabels)
    +
    +
    +def usage():
    +    print >> sys.stderr, \
    +        "Usage: logistic_regression [libsvm format data filepath]\n" + \
    --- End diff --
    
    `logistic_regression` -> `tree` (or maybe we should change the name to 
`decision_tree_runner.py` to match Scala's.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to