Github user yanboliang commented on a diff in the pull request:

    https://github.com/apache/spark/pull/13262#discussion_r64540348
  
    --- Diff: docs/ml-advanced.md ---
    @@ -4,10 +4,85 @@ title: Advanced topics - spark.ml
     displayTitle: Advanced topics - spark.ml
     ---
     
    -# Optimization of linear methods
    +* Table of contents
    +{:toc}
    +
    +`\[
    +\newcommand{\R}{\mathbb{R}}
    +\newcommand{\E}{\mathbb{E}} 
    +\newcommand{\x}{\mathbf{x}}
    +\newcommand{\y}{\mathbf{y}}
    +\newcommand{\wv}{\mathbf{w}}
    +\newcommand{\av}{\mathbf{\alpha}}
    +\newcommand{\bv}{\mathbf{b}}
    +\newcommand{\N}{\mathbb{N}}
    +\newcommand{\id}{\mathbf{I}} 
    +\newcommand{\ind}{\mathbf{1}} 
    +\newcommand{\0}{\mathbf{0}} 
    +\newcommand{\unit}{\mathbf{e}} 
    +\newcommand{\one}{\mathbf{1}} 
    +\newcommand{\zero}{\mathbf{0}}
    +\]`
    +
    +# Optimization of linear methods (developer)
    +
    +## Limited-memory BFGS (L-BFGS)
    +[L-BFGS](http://en.wikipedia.org/wiki/Limited-memory_BFGS) is an 
optimization 
    +algorithm in the family of quasi-Newton methods to solve the optimization 
problems of the form 
    +`$\min_{\wv \in\R^d} \; f(\wv)$`. The L-BFGS method approximates the 
objective function locally as a 
    +quadratic without evaluating the second partial derivatives of the 
objective function to construct the 
    +Hessian matrix. The Hessian matrix is approximated by previous gradient 
evaluations, so there is no 
    +vertical scalability issue (the number of training features) unlike 
computing the Hessian matrix 
    +explicitly in Newton's method. As a result, L-BFGS often achieves faster 
convergence compared with 
    +other first-order optimizations.
     
    -The optimization algorithm underlying the implementation is called
     [Orthant-Wise Limited-memory
     
QuasiNewton](http://research-srv.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf)
    -(OWL-QN). It is an extension of L-BFGS that can effectively handle L1
    -regularization and elastic net.
    +(OWL-QN) is an extension of L-BFGS that can effectively handle L1 
regularization and elastic net.
    +
    +L-BFGS is used as a solver for 
[LinearRegression](api/scala/index.html#org.apache.spark.ml.regression.LinearRegression),
    
+[LogisticRegression](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegression),
    
+[AFTSurvivalRegression](api/scala/index.html#org.apache.spark.ml.regression.AFTSurvivalRegression)
    +and 
[MultilayerPerceptronClassifier](api/scala/index.html#org.apache.spark.ml.classification.MultilayerPerceptronClassifier).
    +
    +MLlib L-BFGS solver calls the corresponding implementation in 
[breeze](https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/optimize/LBFGS.scala).
    +
    +## Normal equation solver for weighted least squares (normal)
    +
    +MLlib implements normal equation solver for [weighted least 
squares](https://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares) by 
[WeightedLeastSquares](https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/optim/WeightedLeastSquares.scala).
    --- End diff --
    
    We will switch RDD-based MLlib APIs to maintenance mode in Spark 2.0. MLlib 
mainly refer to the DataFrame-based API later, so I think it's OK to use MLlib.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to