Github user lianhuiwang commented on a diff in the pull request: https://github.com/apache/spark/pull/13494#discussion_r68190320 --- Diff: sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/FileSourceStrategy.scala --- @@ -109,108 +111,45 @@ private[sql] object FileSourceStrategy extends Strategy with Logging { val pushedDownFilters = dataFilters.flatMap(DataSourceStrategy.translateFilter) logInfo(s"Pushed Filters: ${pushedDownFilters.mkString(",")}") - val readFile = files.fileFormat.buildReaderWithPartitionValues( - sparkSession = files.sparkSession, - dataSchema = files.dataSchema, - partitionSchema = files.partitionSchema, - requiredSchema = prunedDataSchema, - filters = pushedDownFilters, - options = files.options, - hadoopConf = files.sparkSession.sessionState.newHadoopConfWithOptions(files.options)) - - val plannedPartitions = files.bucketSpec match { - case Some(bucketing) if files.sparkSession.sessionState.conf.bucketingEnabled => - logInfo(s"Planning with ${bucketing.numBuckets} buckets") - val bucketed = - selectedPartitions.flatMap { p => - p.files.map { f => - val hosts = getBlockHosts(getBlockLocations(f), 0, f.getLen) - PartitionedFile(p.values, f.getPath.toUri.toString, 0, f.getLen, hosts) - } - }.groupBy { f => - BucketingUtils - .getBucketId(new Path(f.filePath).getName) - .getOrElse(sys.error(s"Invalid bucket file ${f.filePath}")) - } - - (0 until bucketing.numBuckets).map { bucketId => - FilePartition(bucketId, bucketed.getOrElse(bucketId, Nil)) - } - - case _ => - val defaultMaxSplitBytes = files.sparkSession.sessionState.conf.filesMaxPartitionBytes - val openCostInBytes = files.sparkSession.sessionState.conf.filesOpenCostInBytes - val defaultParallelism = files.sparkSession.sparkContext.defaultParallelism - val totalBytes = selectedPartitions.flatMap(_.files.map(_.getLen + openCostInBytes)).sum - val bytesPerCore = totalBytes / defaultParallelism - val maxSplitBytes = Math.min(defaultMaxSplitBytes, - Math.max(openCostInBytes, bytesPerCore)) - logInfo(s"Planning scan with bin packing, max size: $maxSplitBytes bytes, " + - s"open cost is considered as scanning $openCostInBytes bytes.") - - val splitFiles = selectedPartitions.flatMap { partition => - partition.files.flatMap { file => - val blockLocations = getBlockLocations(file) - (0L until file.getLen by maxSplitBytes).map { offset => - val remaining = file.getLen - offset - val size = if (remaining > maxSplitBytes) maxSplitBytes else remaining - val hosts = getBlockHosts(blockLocations, offset, size) - PartitionedFile(partition.values, file.getPath.toUri.toString, offset, size, hosts) - } - } - }.toArray.sortBy(_.length)(implicitly[Ordering[Long]].reverse) - - val partitions = new ArrayBuffer[FilePartition] - val currentFiles = new ArrayBuffer[PartitionedFile] - var currentSize = 0L - - /** Add the given file to the current partition. */ - def addFile(file: PartitionedFile): Unit = { - currentSize += file.length + openCostInBytes - currentFiles.append(file) - } - - /** Close the current partition and move to the next. */ - def closePartition(): Unit = { - if (currentFiles.nonEmpty) { - val newPartition = - FilePartition( - partitions.size, - currentFiles.toArray.toSeq) // Copy to a new Array. - partitions.append(newPartition) - } - currentFiles.clear() - currentSize = 0 - } - - // Assign files to partitions using "First Fit Decreasing" (FFD) - // TODO: consider adding a slop factor here? - splitFiles.foreach { file => - if (currentSize + file.length > maxSplitBytes) { - closePartition() - } - addFile(file) - } - closePartition() - partitions + val optimizerMetadataOnly = + readDataColumns.isEmpty && files.sparkSession.sessionState.conf.optimizerMetadataOnly + val scanRdd: RDD[InternalRow] = if (optimizerMetadataOnly) { + val partitionSchema = files.partitionSchema.toAttributes + lazy val converter = GenerateUnsafeProjection.generate(partitionSchema, partitionSchema) + val partitionValues = selectedPartitions.map(_.values) + files.sqlContext.sparkContext.parallelize(partitionValues, 1).map(converter(_)) --- End diff -- Now in this PR, default of spark.sql.optimizer.metadataOnly is false, So if user needs this feature, he should set spark.sql.optimizer.metadataOnly=true.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org