Github user HyukjinKwon commented on a diff in the pull request:

    https://github.com/apache/spark/pull/14102#discussion_r74372103
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/json/JacksonParser.scala
 ---
    @@ -35,184 +34,289 @@ import org.apache.spark.util.Utils
     
     private[json] class SparkSQLJsonProcessingException(msg: String) extends 
RuntimeException(msg)
     
    -object JacksonParser extends Logging {
    +class JacksonParser(
    +    schema: StructType,
    +    columnNameOfCorruptRecord: String,
    +    options: JSONOptions) extends Logging {
     
    -  def parse(
    -      input: RDD[String],
    -      schema: StructType,
    -      columnNameOfCorruptRecords: String,
    -      configOptions: JSONOptions): RDD[InternalRow] = {
    +  import com.fasterxml.jackson.core.JsonToken._
     
    -    input.mapPartitions { iter =>
    -      parseJson(iter, schema, columnNameOfCorruptRecords, configOptions)
    +  // A `ValueConverter` is responsible for converting a value from 
`JsonParser`
    +  // to a value in a field for `InternalRow`.
    +  private type ValueConverter = (JsonParser) => Any
    +
    +  // `ValueConverter`s for the root schema for all fields in the schema
    +  private val rootConverter: ValueConverter = makeRootConverter(schema)
    +
    +  private val factory = new JsonFactory()
    +  options.setJacksonOptions(factory)
    +
    +  private def failedRecord(record: String): Seq[InternalRow] = {
    +    // create a row even if no corrupt record column is present
    +    if (options.failFast) {
    +      throw new RuntimeException(s"Malformed line in FAILFAST mode: 
$record")
    +    }
    +    if (options.dropMalformed) {
    +      logWarning(s"Dropping malformed line: $record")
    +      Nil
    +    } else {
    +      val row = new GenericMutableRow(schema.length)
    +      for (corruptIndex <- 
schema.getFieldIndex(columnNameOfCorruptRecord)) {
    +        require(schema(corruptIndex).dataType == StringType)
    +        row.update(corruptIndex, UTF8String.fromString(record))
    +      }
    +      Seq(row)
         }
       }
     
       /**
    -   * Parse the current token (and related children) according to a desired 
schema
    -   * This is a wrapper for the method `convertField()` to handle a row 
wrapped
    -   * with an array.
    +   * Create a converter which converts the JSON documents held by the 
`JsonParser`
    +   * to a value according to a desired schema. This is a wrapper for the 
method
    +   * `makeConverter()` to handle a row wrapped with an array.
        */
    -  def convertRootField(
    -      factory: JsonFactory,
    -      parser: JsonParser,
    -      schema: DataType): Any = {
    -    import com.fasterxml.jackson.core.JsonToken._
    -    (parser.getCurrentToken, schema) match {
    -      case (START_ARRAY, st: StructType) =>
    -        // SPARK-3308: support reading top level JSON arrays and take 
every element
    -        // in such an array as a row
    -        convertArray(factory, parser, st)
    -
    -      case (START_OBJECT, ArrayType(st, _)) =>
    +  def makeRootConverter(dataType: DataType): ValueConverter = dataType 
match {
    +    case st: StructType =>
    +      val elementConverter = makeConverter(st)
    +      val fieldConverters = st.map(_.dataType).map(makeConverter)
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case START_OBJECT => convertObject(parser, st, fieldConverters)
    +          // SPARK-3308: support reading top level JSON arrays and take 
every element
    +          // in such an array as a row
    +          //
    +          // For example, we support, the JSON data as below:
    +          //
    +          // [{"a":"str_a_1"}]
    +          // [{"a":"str_a_2"}, {"b":"str_b_3"}]
    +          //
    +          // resulting in:
    +          //
    +          // List([str_a_1,null])
    +          // List([str_a_2,null], [null,str_b_3])
    +          //
    +        case START_ARRAY => convertArray(parser, elementConverter)
    +      }
    +
    +    case ArrayType(st: StructType, _) =>
    +      val elementConverter = makeConverter(st)
    +      val fieldConverters = st.map(_.dataType).map(makeConverter)
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
             // the business end of SPARK-3308:
    -        // when an object is found but an array is requested just wrap it 
in a list
    -        convertField(factory, parser, st) :: Nil
    +        // when an object is found but an array is requested just wrap it 
in a list.
    +        // This is being wrapped in `JacksonParser.parse`.
    +        case START_OBJECT => convertObject(parser, st, fieldConverters)
    +        case START_ARRAY => convertArray(parser, elementConverter)
    +      }
     
    -      case _ =>
    -        convertField(factory, parser, schema)
    -    }
    +    case _ => makeConverter(dataType)
       }
     
    -  private def convertField(
    -      factory: JsonFactory,
    -      parser: JsonParser,
    -      schema: DataType): Any = {
    -    import com.fasterxml.jackson.core.JsonToken._
    -    (parser.getCurrentToken, schema) match {
    -      case (null | VALUE_NULL, _) =>
    -        null
    +  /**
    +   * Create a converter which converts the JSON documents held by the 
`JsonParser`
    +   * to a value according to a desired schema.
    +   */
    +  private def makeConverter(dataType: DataType): ValueConverter = dataType 
match {
    +    case BooleanType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_TRUE => true
    +        case VALUE_FALSE => false
    +      }
     
    -      case (FIELD_NAME, _) =>
    -        parser.nextToken()
    -        convertField(factory, parser, schema)
    -
    -      case (VALUE_STRING, StringType) =>
    -        UTF8String.fromString(parser.getText)
    -
    -      case (VALUE_STRING, _) if parser.getTextLength < 1 =>
    -        // guard the non string type
    -        null
    -
    -      case (VALUE_STRING, BinaryType) =>
    -        parser.getBinaryValue
    -
    -      case (VALUE_STRING, DateType) =>
    -        val stringValue = parser.getText
    -        if (stringValue.contains("-")) {
    -          // The format of this string will probably be "yyyy-mm-dd".
    -          
DateTimeUtils.millisToDays(DateTimeUtils.stringToTime(parser.getText).getTime)
    -        } else {
    -          // In Spark 1.5.0, we store the data as number of days since 
epoch in string.
    -          // So, we just convert it to Int.
    -          stringValue.toInt
    -        }
    +    case ByteType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_NUMBER_INT => parser.getByteValue
    +      }
     
    -      case (VALUE_STRING, TimestampType) =>
    -        // This one will lose microseconds parts.
    -        // See https://issues.apache.org/jira/browse/SPARK-10681.
    -        DateTimeUtils.stringToTime(parser.getText).getTime * 1000L
    +    case ShortType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_NUMBER_INT => parser.getShortValue
    +      }
     
    -      case (VALUE_NUMBER_INT, TimestampType) =>
    -        parser.getLongValue * 1000000L
    +    case IntegerType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_NUMBER_INT => parser.getIntValue
    +      }
     
    -      case (_, StringType) =>
    -        val writer = new ByteArrayOutputStream()
    -        Utils.tryWithResource(factory.createGenerator(writer, 
JsonEncoding.UTF8)) {
    -          generator => generator.copyCurrentStructure(parser)
    -        }
    -        UTF8String.fromBytes(writer.toByteArray)
    -
    -      case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, FloatType) =>
    -        parser.getFloatValue
    -
    -      case (VALUE_STRING, FloatType) =>
    -        // Special case handling for NaN and Infinity.
    -        val value = parser.getText
    -        val lowerCaseValue = value.toLowerCase()
    -        if (lowerCaseValue.equals("nan") ||
    -          lowerCaseValue.equals("infinity") ||
    -          lowerCaseValue.equals("-infinity") ||
    -          lowerCaseValue.equals("inf") ||
    -          lowerCaseValue.equals("-inf")) {
    -          value.toFloat
    -        } else {
    -          throw new SparkSQLJsonProcessingException(s"Cannot parse $value 
as FloatType.")
    -        }
    +    case LongType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_NUMBER_INT => parser.getLongValue
    +      }
     
    -      case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, DoubleType) =>
    -        parser.getDoubleValue
    -
    -      case (VALUE_STRING, DoubleType) =>
    -        // Special case handling for NaN and Infinity.
    -        val value = parser.getText
    -        val lowerCaseValue = value.toLowerCase()
    -        if (lowerCaseValue.equals("nan") ||
    -          lowerCaseValue.equals("infinity") ||
    -          lowerCaseValue.equals("-infinity") ||
    -          lowerCaseValue.equals("inf") ||
    -          lowerCaseValue.equals("-inf")) {
    -          value.toDouble
    -        } else {
    -          throw new SparkSQLJsonProcessingException(s"Cannot parse $value 
as DoubleType.")
    -        }
    +    case FloatType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT =>
    +          parser.getFloatValue
    +
    +        case VALUE_STRING =>
    +          // Special case handling for NaN and Infinity.
    +          val value = parser.getText
    +          val lowerCaseValue = value.toLowerCase
    +          if (lowerCaseValue.equals("nan") ||
    +            lowerCaseValue.equals("infinity") ||
    +            lowerCaseValue.equals("-infinity") ||
    +            lowerCaseValue.equals("inf") ||
    +            lowerCaseValue.equals("-inf")) {
    +            value.toFloat
    +          } else {
    +            throw new SparkSQLJsonProcessingException(s"Cannot parse 
$value as FloatType.")
    +          }
    +      }
     
    -      case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, dt: DecimalType) =>
    -        Decimal(parser.getDecimalValue, dt.precision, dt.scale)
    +    case DoubleType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT =>
    +          parser.getDoubleValue
    +
    +        case VALUE_STRING =>
    +          // Special case handling for NaN and Infinity.
    +          val value = parser.getText
    +          val lowerCaseValue = value.toLowerCase
    +          if (lowerCaseValue.equals("nan") ||
    +            lowerCaseValue.equals("infinity") ||
    +            lowerCaseValue.equals("-infinity") ||
    +            lowerCaseValue.equals("inf") ||
    +            lowerCaseValue.equals("-inf")) {
    +            value.toDouble
    +          } else {
    +            throw new SparkSQLJsonProcessingException(s"Cannot parse 
$value as DoubleType.")
    +          }
    +      }
     
    -      case (VALUE_NUMBER_INT, ByteType) =>
    -        parser.getByteValue
    +    case StringType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_STRING =>
    +          UTF8String.fromString(parser.getText)
     
    -      case (VALUE_NUMBER_INT, ShortType) =>
    -        parser.getShortValue
    +        case _ =>
    +          val writer = new ByteArrayOutputStream()
    +          Utils.tryWithResource(factory.createGenerator(writer, 
JsonEncoding.UTF8)) {
    +            generator => generator.copyCurrentStructure(parser)
    +          }
    +          UTF8String.fromBytes(writer.toByteArray)
    +      }
     
    -      case (VALUE_NUMBER_INT, IntegerType) =>
    -        parser.getIntValue
    +    case TimestampType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_STRING =>
    +          // This one will lose microseconds parts.
    +          // See https://issues.apache.org/jira/browse/SPARK-10681.
    +          DateTimeUtils.stringToTime(parser.getText).getTime * 1000L
     
    -      case (VALUE_NUMBER_INT, LongType) =>
    -        parser.getLongValue
    +        case VALUE_NUMBER_INT =>
    +          parser.getLongValue * 1000000L
    +      }
     
    -      case (VALUE_TRUE, BooleanType) =>
    -        true
    +    case DateType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_STRING =>
    +          val stringValue = parser.getText
    +          if (stringValue.contains("-")) {
    +            // The format of this string will probably be "yyyy-mm-dd".
    +            
DateTimeUtils.millisToDays(DateTimeUtils.stringToTime(parser.getText).getTime)
    +          } else {
    +            // In Spark 1.5.0, we store the data as number of days since 
epoch in string.
    +            // So, we just convert it to Int.
    +            stringValue.toInt
    +          }
    +      }
    +
    +    case BinaryType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case VALUE_STRING => parser.getBinaryValue
    +      }
     
    -      case (VALUE_FALSE, BooleanType) =>
    -        false
    +    case dt: DecimalType =>
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT) =>
    +          Decimal(parser.getDecimalValue, dt.precision, dt.scale)
    +      }
     
    -      case (START_OBJECT, st: StructType) =>
    -        convertObject(factory, parser, st)
    +    case st: StructType =>
    +      val fieldConverters = st.map(_.dataType).map(makeConverter)
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case START_OBJECT => convertObject(parser, st, fieldConverters)
    +      }
     
    -      case (START_ARRAY, ArrayType(st, _)) =>
    -        convertArray(factory, parser, st)
    +    case at: ArrayType =>
    +      val elementConverter = makeConverter(at.elementType)
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case START_ARRAY => convertArray(parser, elementConverter)
    +      }
     
    -      case (START_OBJECT, MapType(StringType, kt, _)) =>
    -        convertMap(factory, parser, kt)
    +    case mt: MapType =>
    +      val valueConverter = makeConverter(mt.valueType)
    +      (parser: JsonParser) => parseJsonToken(parser, dataType) {
    +        case START_OBJECT => convertMap(parser, valueConverter)
    +      }
     
    -      case (_, udt: UserDefinedType[_]) =>
    -        convertField(factory, parser, udt.sqlType)
    +    case udt: UserDefinedType[_] =>
    +      makeConverter(udt.sqlType)
     
    -      case (token, dataType) =>
    -        // We cannot parse this token based on the given data type. So, we 
throw a
    -        // SparkSQLJsonProcessingException and this exception will be 
caught by
    -        // parseJson method.
    -        throw new SparkSQLJsonProcessingException(
    -          s"Failed to parse a value for data type $dataType (current 
token: $token).")
    +    case _ =>
    --- End diff --
    
    Actually, `NullType` and `CalendarIntervalType` (maybe some more?) are 
missed here. As it is possible for user to specify the schema, I do favour to 
keep this.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to