Github user JoshRosen commented on a diff in the pull request: https://github.com/apache/spark/pull/14907#discussion_r77100063 --- Diff: sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/jdbc/JdbcUtils.scala --- @@ -154,6 +163,288 @@ object JdbcUtils extends Logging { throw new IllegalArgumentException(s"Can't get JDBC type for ${dt.simpleString}")) } + /** + * Maps a JDBC type to a Catalyst type. This function is called only when + * the JdbcDialect class corresponding to your database driver returns null. + * + * @param sqlType - A field of java.sql.Types + * @return The Catalyst type corresponding to sqlType. + */ + private def getCatalystType( + sqlType: Int, + precision: Int, + scale: Int, + signed: Boolean): DataType = { + val answer = sqlType match { + // scalastyle:off + case java.sql.Types.ARRAY => null + case java.sql.Types.BIGINT => if (signed) { LongType } else { DecimalType(20,0) } + case java.sql.Types.BINARY => BinaryType + case java.sql.Types.BIT => BooleanType // @see JdbcDialect for quirks + case java.sql.Types.BLOB => BinaryType + case java.sql.Types.BOOLEAN => BooleanType + case java.sql.Types.CHAR => StringType + case java.sql.Types.CLOB => StringType + case java.sql.Types.DATALINK => null + case java.sql.Types.DATE => DateType + case java.sql.Types.DECIMAL + if precision != 0 || scale != 0 => DecimalType.bounded(precision, scale) + case java.sql.Types.DECIMAL => DecimalType.SYSTEM_DEFAULT + case java.sql.Types.DISTINCT => null + case java.sql.Types.DOUBLE => DoubleType + case java.sql.Types.FLOAT => FloatType + case java.sql.Types.INTEGER => if (signed) { IntegerType } else { LongType } + case java.sql.Types.JAVA_OBJECT => null + case java.sql.Types.LONGNVARCHAR => StringType + case java.sql.Types.LONGVARBINARY => BinaryType + case java.sql.Types.LONGVARCHAR => StringType + case java.sql.Types.NCHAR => StringType + case java.sql.Types.NCLOB => StringType + case java.sql.Types.NULL => null + case java.sql.Types.NUMERIC + if precision != 0 || scale != 0 => DecimalType.bounded(precision, scale) + case java.sql.Types.NUMERIC => DecimalType.SYSTEM_DEFAULT + case java.sql.Types.NVARCHAR => StringType + case java.sql.Types.OTHER => null + case java.sql.Types.REAL => DoubleType + case java.sql.Types.REF => StringType + case java.sql.Types.ROWID => LongType + case java.sql.Types.SMALLINT => IntegerType + case java.sql.Types.SQLXML => StringType + case java.sql.Types.STRUCT => StringType + case java.sql.Types.TIME => TimestampType + case java.sql.Types.TIMESTAMP => TimestampType + case java.sql.Types.TINYINT => IntegerType + case java.sql.Types.VARBINARY => BinaryType + case java.sql.Types.VARCHAR => StringType + case _ => null + // scalastyle:on + } + + if (answer == null) throw new SQLException("Unsupported type " + sqlType) + answer + } + + /** + * Takes a [[ResultSet]] and returns its Catalyst schema. + * + * @return A [[StructType]] giving the Catalyst schema. + * @throws SQLException if the schema contains an unsupported type. + */ + def getSchema(resultSet: ResultSet, dialect: JdbcDialect): StructType = { + val rsmd = resultSet.getMetaData + val ncols = rsmd.getColumnCount + val fields = new Array[StructField](ncols) + var i = 0 + while (i < ncols) { + val columnName = rsmd.getColumnLabel(i + 1) + val dataType = rsmd.getColumnType(i + 1) + val typeName = rsmd.getColumnTypeName(i + 1) + val fieldSize = rsmd.getPrecision(i + 1) + val fieldScale = rsmd.getScale(i + 1) + val isSigned = rsmd.isSigned(i + 1) + val nullable = rsmd.isNullable(i + 1) != ResultSetMetaData.columnNoNulls + val metadata = new MetadataBuilder() + .putString("name", columnName) + .putLong("scale", fieldScale) + val columnType = + dialect.getCatalystType(dataType, typeName, fieldSize, metadata).getOrElse( + getCatalystType(dataType, fieldSize, fieldScale, isSigned)) + fields(i) = StructField(columnName, columnType, nullable, metadata.build()) + i = i + 1 + } + new StructType(fields) + } + + /** + * Convert a [[ResultSet]] into an iterator of Catalyst Rows. + */ + def resultSetToRows(resultSet: ResultSet, schema: StructType): Iterator[Row] = { + val inputMetrics = + Option(TaskContext.get()).map(_.taskMetrics().inputMetrics).getOrElse(new InputMetrics) + val encoder = RowEncoder(schema).resolveAndBind() + val internalRows = resultSetToSparkInternalRows(resultSet, schema, inputMetrics) + internalRows.map(encoder.fromRow) + } + + private[spark] def resultSetToSparkInternalRows( + resultSet: ResultSet, + schema: StructType, + inputMetrics: InputMetrics): Iterator[InternalRow] = { + new NextIterator[InternalRow] { + private[this] val rs = resultSet + private[this] val getters: Array[JDBCValueGetter] = makeGetters(schema) + private[this] val mutableRow = new SpecificMutableRow(schema.fields.map(x => x.dataType)) + + override protected def close(): Unit = { --- End diff -- Note that we may now close the `ResultSet` three times in `JDBCRDD`: here, at the `CompletionIterator`, and in the `TaskContext` completion callback. This is fine, though, since the old code already assumed that `rs.close()` was idempotent.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org