Github user mridulm commented on a diff in the pull request:

    https://github.com/apache/spark/pull/15769#discussion_r86859239
  
    --- Diff: 
core/src/main/scala/org/apache/spark/internal/io/SparkHadoopMapReduceWriter.scala
 ---
    @@ -0,0 +1,243 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.internal.io
    +
    +import java.text.SimpleDateFormat
    +import java.util.{Date, Locale}
    +
    +import scala.reflect.ClassTag
    +import scala.util.DynamicVariable
    +
    +import org.apache.hadoop.conf.Configuration
    +import org.apache.hadoop.fs.Path
    +import org.apache.hadoop.mapred.{JobConf, JobID}
    +import org.apache.hadoop.mapreduce._
    +import org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl
    +
    +import org.apache.spark.{SparkConf, SparkException, TaskContext}
    +import org.apache.spark.deploy.SparkHadoopUtil
    +import org.apache.spark.executor.OutputMetrics
    +import org.apache.spark.internal.Logging
    +import org.apache.spark.internal.io.FileCommitProtocol.TaskCommitMessage
    +import org.apache.spark.rdd.RDD
    +import org.apache.spark.util.{SerializableConfiguration, Utils}
    +
    +/**
    + * A helper object that saves an RDD using a Hadoop OutputFormat
    + * (from the newer mapreduce API, not the old mapred API).
    + */
    +private[spark]
    +object SparkHadoopMapReduceWriter extends Logging {
    +
    +  /**
    +   * Basic work flow of this command is:
    +   * 1. Driver side setup, prepare the data source and hadoop 
configuration for the write job to
    +   *    be issued.
    +   * 2. Issues a write job consists of one or more executor side tasks, 
each of which writes all
    +   *    rows within an RDD partition.
    +   * 3. If no exception is thrown in a task, commits that task, otherwise 
aborts that task;  If any
    +   *    exception is thrown during task commitment, also aborts that task.
    +   * 4. If all tasks are committed, commit the job, otherwise aborts the 
job;  If any exception is
    +   *    thrown during job commitment, also aborts the job.
    +   */
    +  def write[K, V: ClassTag](
    +      rdd: RDD[(K, V)],
    +      hadoopConf: Configuration): Unit = {
    +    // Extract context and configuration from RDD.
    +    val sparkContext = rdd.context
    +    val stageId = rdd.id
    +    val sparkConf = rdd.conf
    +    val conf = new SerializableConfiguration(hadoopConf)
    +
    +    // Set up a job.
    +    val jobTrackerId = SparkHadoopWriterUtils.createJobTrackerID(new 
Date())
    +    val jobAttemptId = new TaskAttemptID(jobTrackerId, stageId, 
TaskType.MAP, 0, 0)
    +    val jobContext = new TaskAttemptContextImpl(conf.value, jobAttemptId)
    +    val format = jobContext.getOutputFormatClass
    +
    +    if (SparkHadoopWriterUtils.isOutputSpecValidationEnabled(sparkConf)) {
    +      // FileOutputFormat ignores the filesystem parameter
    +      val jobFormat = format.newInstance
    +      jobFormat.checkOutputSpecs(jobContext)
    +    }
    +
    +    val committer = FileCommitProtocol.instantiate(
    +      className = classOf[HadoopMapReduceCommitProtocol].getName,
    +      jobId = stageId.toString,
    +      outputPath = conf.value.get("mapred.output.dir"),
    +      isAppend = false).asInstanceOf[HadoopMapReduceCommitProtocol]
    +    committer.setupJob(jobContext)
    +
    +    // When speculation is on and output committer class name contains 
"Direct", we should warn
    +    // users that they may loss data if they are using a direct output 
committer.
    +    if (SparkHadoopWriterUtils.isSpeculationEnabled(sparkConf) && 
committer.isDirectOutput) {
    +      val warningMessage =
    +        s"$committer may be an output committer that writes data directly 
to " +
    +          "the final location. Because speculation is enabled, this output 
committer may " +
    +          "cause data loss (see the case in SPARK-10063). If possible, 
please use an output " +
    +          "committer that does not have this behavior (e.g. 
FileOutputCommitter)."
    +      logWarning(warningMessage)
    +    }
    +
    +    // Try to write all RDD partitions as a Hadoop OutputFormat.
    +    try {
    +      val ret = sparkContext.runJob(rdd, (context: TaskContext, iter: 
Iterator[(K, V)]) => {
    +        executeTask(
    +          context = context,
    +          jobTrackerId = jobTrackerId,
    +          sparkStageId = context.stageId,
    +          sparkPartitionId = context.partitionId,
    +          sparkAttemptNumber = context.attemptNumber,
    +          committer = committer,
    +          hadoopConf = conf.value,
    +          outputFormat = format.asInstanceOf[Class[OutputFormat[K, V]]],
    +          iterator = iter)
    +      })
    +
    +      committer.commitJob(jobContext, ret)
    +      logInfo(s"Job ${jobContext.getJobID} committed.")
    +    } catch { case cause: Throwable =>
    +      logError(s"Aborting job ${jobContext.getJobID}.", cause)
    +      committer.abortJob(jobContext)
    +      throw new SparkException("Job aborted.", cause)
    +    }
    +  }
    +
    +  /** Write a RDD partition out in a single Spark task. */
    +  private def executeTask[K, V: ClassTag](
    +      context: TaskContext,
    +      jobTrackerId: String,
    +      sparkStageId: Int,
    +      sparkPartitionId: Int,
    +      sparkAttemptNumber: Int,
    +      committer: FileCommitProtocol,
    +      hadoopConf: Configuration,
    +      outputFormat: Class[_ <: OutputFormat[K, V]],
    +      iterator: Iterator[(K, V)]): TaskCommitMessage = {
    +    // Set up a task.
    +    val attemptId = new TaskAttemptID(jobTrackerId, sparkStageId, 
TaskType.REDUCE,
    +      sparkPartitionId, sparkAttemptNumber)
    +    val taskContext = new TaskAttemptContextImpl(hadoopConf, attemptId)
    +    committer.setupTask(taskContext)
    +
    +    val outputMetricsAndBytesWrittenCallback: Option[(OutputMetrics, () => 
Long)] =
    +      SparkHadoopWriterUtils.initHadoopOutputMetrics(context)
    +
    +    // Initiate the writer.
    +    val taskFormat = outputFormat.newInstance
    +    val writer = taskFormat.getRecordWriter(taskContext)
    +      .asInstanceOf[RecordWriter[K, V]]
    +    require(writer != null, "Unable to obtain RecordWriter")
    +    var recordsWritten = 0L
    +
    +    // Write all rows in RDD partition.
    +    try {
    +      Utils.tryWithSafeFinallyAndFailureCallbacks {
    +        while (iterator.hasNext) {
    +          val pair = iterator.next()
    +          writer.write(pair._1, pair._2)
    +
    +          // Update bytes written metric every few records
    +          SparkHadoopWriterUtils.maybeUpdateOutputMetrics(
    +            outputMetricsAndBytesWrittenCallback, recordsWritten)
    +          recordsWritten += 1
    +        }
    +
    +        committer.commitTask(taskContext)
    +      }(catchBlock = {
    +        committer.abortTask(taskContext)
    +        logError(s"Task ${taskContext.getTaskAttemptID} aborted.")
    +      }, finallyBlock = writer.close(taskContext))
    +    } catch {
    +      case t: Throwable =>
    +        throw new SparkException("Task failed while writing rows", t)
    +    } finally {
    +      outputMetricsAndBytesWrittenCallback.foreach { case (om, callback) =>
    +        om.setBytesWritten(callback())
    +        om.setRecordsWritten(recordsWritten)
    +      }
    +    }
    +  }
    +}
    +
    +private[spark]
    +object SparkHadoopWriterUtils {
    +  def createJobID(time: Date, id: Int): JobID = {
    +    val jobtrackerID = createJobTrackerID(time)
    +    new JobID(jobtrackerID, id)
    +  }
    +
    +  def createJobTrackerID(time: Date): String = {
    +    new SimpleDateFormat("yyyyMMddHHmmss", Locale.US).format(time)
    +  }
    +
    +  def createPathFromString(path: String, conf: JobConf): Path = {
    +    if (path == null) {
    +      throw new IllegalArgumentException("Output path is null")
    +    }
    +    val outputPath = new Path(path)
    +    val fs = outputPath.getFileSystem(conf)
    +    if (fs == null) {
    +      throw new IllegalArgumentException("Incorrectly formatted output 
path")
    +    }
    +    outputPath.makeQualified(fs.getUri, fs.getWorkingDirectory)
    +  }
    +
    +  // Note: this needs to be a function instead of a 'val' so that the 
disableOutputSpecValidation
    +  // setting can take effect:
    +  def isOutputSpecValidationEnabled(conf: SparkConf): Boolean = {
    +    val validationDisabled = disableOutputSpecValidation.value
    +    val enabledInConf = 
conf.getBoolean("spark.hadoop.validateOutputSpecs", true)
    +    enabledInConf && !validationDisabled
    +  }
    +
    +  def isSpeculationEnabled(conf: SparkConf): Boolean = {
    +    conf.getBoolean("spark.speculation", false)
    +  }
    +
    +  // TODO: these don't seem like the right abstractions.
    +  // We should abstract the duplicate code in a less awkward way.
    +
    +  // return type: (output metrics, bytes written callback), defined only 
if the latter is defined
    +  def initHadoopOutputMetrics(
    +      context: TaskContext): Option[(OutputMetrics, () => Long)] = {
    +    val bytesWrittenCallback = 
SparkHadoopUtil.get.getFSBytesWrittenOnThreadCallback()
    +    bytesWrittenCallback.map { b =>
    +      (context.taskMetrics().outputMetrics, b)
    +    }
    +  }
    +
    +  def maybeUpdateOutputMetrics(
    +      outputMetricsAndBytesWrittenCallback: Option[(OutputMetrics, () => 
Long)],
    +      recordsWritten: Long): Unit = {
    +    if (recordsWritten % RECORDS_BETWEEN_BYTES_WRITTEN_METRIC_UPDATES == 
0) {
    +      outputMetricsAndBytesWrittenCallback.foreach { case (om, callback) =>
    +        om.setBytesWritten(callback())
    +        om.setRecordsWritten(recordsWritten)
    +      }
    +    }
    +  }
    +
    +  val RECORDS_BETWEEN_BYTES_WRITTEN_METRIC_UPDATES = 256
    --- End diff --
    
    private and move it to top of the object ?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to