Github user sethah commented on a diff in the pull request:

    https://github.com/apache/spark/pull/16699#discussion_r99263111
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala
 ---
    @@ -743,6 +743,84 @@ class GeneralizedLinearRegressionSuite
         }
       }
     
    +  test("generalized linear regression with offset") {
    +    /*
    +      R code:
    +      library(statmod)
    +      df <- as.data.frame(matrix(c(
    +        1.0, 1.0, 2.0, 0.0, 5.0,
    +        2.0, 2.0, 0.5, 1.0, 2.0,
    +        1.0, 3.0, 1.0, 2.0, 1.0,
    +        2.0, 4.0, 0.0, 3.0, 3.0), 4, 5, byrow = TRUE))
    +      families <- list(gaussian, poisson, Gamma, tweedie(1.5))
    +      f1 <- V1 ~ -1 + V4 + V5
    +      f2 <- V1 ~ V4 + V5
    +      for (f in c(f1, f2)) {
    +        for (fam in families) {
    +          model <- glm(f, df, family = fam, weights = V2, offset = V3)
    +          print(as.vector(coef(model)))
    +        }
    +      }
    +
    +      [1] 0.535040431 0.005390836
    +      [1]  0.1968355 -0.2061711
    +      [1]  0.307996 -0.153579
    +      [1]  0.32166185 -0.09698986
    +      [1] -0.8800000  0.7342857  0.1714286
    +      [1] -1.9991044  0.7247511  0.1424392
    +      [1] -0.27378146  0.31599396 -0.06204946
    +      [1] -0.17118812  0.31200361 -0.02541656
    +    */
    +    val dataset = Seq(
    +      OffsetInstance(1.0, 1.0, 2.0, Vectors.dense(0.0, 5.0)),
    +      OffsetInstance(2.0, 2.0, 0.5, Vectors.dense(1.0, 2.0)),
    +      OffsetInstance(1.0, 3.0, 1.0, Vectors.dense(2.0, 1.0)),
    +      OffsetInstance(2.0, 4.0, 0.0, Vectors.dense(3.0, 3.0))
    +    ).toDF()
    +
    +    val expected = Seq(
    +      Vectors.dense(0.0, 0.535040431, 0.005390836),
    +      Vectors.dense(0.0, 0.1968355, -0.2061711),
    +      Vectors.dense(0.0, 0.307996, -0.153579),
    +      Vectors.dense(0.0, 0.32166185, -0.09698986),
    +      Vectors.dense(-0.88, 0.7342857, 0.1714286),
    +      Vectors.dense(-1.9991044, 0.7247511, 0.1424392),
    +      Vectors.dense(-0.27378146, 0.31599396, -0.06204946),
    +      Vectors.dense(-0.17118812, 0.31200361, -0.02541656))
    +
    +    import GeneralizedLinearRegression._
    +
    +    var idx = 0
    +    for (fitIntercept <- Seq(false, true)) {
    +      for (family <- Seq("gaussian", "poisson", "gamma", "tweedie")) {
    +        var trainer = new GeneralizedLinearRegression().setFamily(family)
    +          .setFitIntercept(fitIntercept).setOffsetCol("offset")
    +          .setWeightCol("weight").setLinkPredictionCol("linkPrediction")
    +        if (family == "tweedie") trainer = trainer.setVariancePower(1.5)
    +        val model = trainer.fit(dataset)
    +        val actual = Vectors.dense(model.intercept, model.coefficients(0), 
model.coefficients(1))
    +        assert(actual ~= expected(idx) absTol 1e-4, s"Model mismatch: GLM 
with family = $family," +
    --- End diff --
    
    We need to be checking more than just the coefficients. For example, the 
computation of the null deviance does not match R, since the null model 
computation does not consider the offsets.
    
    Actually, I think we ought to just incorporate offsets into all of the 
other tests, which will make sure offsets are exhaustively tested. This has 
been done before e.g. https://github.com/apache/spark/pull/15488, and it _is_ a 
real pain, but it's probably the best way. I'd be open to other arguments 
though.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to