Github user MLnick commented on a diff in the pull request:

    https://github.com/apache/spark/pull/11601#discussion_r103886487
  
    --- Diff: mllib/src/main/scala/org/apache/spark/ml/feature/Imputer.scala ---
    @@ -0,0 +1,260 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.ml.feature
    +
    +import org.apache.hadoop.fs.Path
    +
    +import org.apache.spark.SparkException
    +import org.apache.spark.annotation.{Experimental, Since}
    +import org.apache.spark.ml.{Estimator, Model}
    +import org.apache.spark.ml.param._
    +import org.apache.spark.ml.param.shared.{HasInputCols, HasOutputCol}
    +import org.apache.spark.ml.util._
    +import org.apache.spark.sql.{DataFrame, Dataset, Row}
    +import org.apache.spark.sql.functions._
    +import org.apache.spark.sql.types._
    +
    +/**
    + * Params for [[Imputer]] and [[ImputerModel]].
    + */
    +private[feature] trait ImputerParams extends Params with HasInputCols with 
HasOutputCol {
    +
    +  /**
    +   * The imputation strategy.
    +   * If "mean", then replace missing values using the mean value of the 
feature.
    +   * If "median", then replace missing values using the approximate median 
value of the feature.
    +   * Default: mean
    +   *
    +   * @group param
    +   */
    +  final val strategy: Param[String] = new Param(this, "strategy", 
"strategy for imputation. " +
    +    "If mean, then replace missing values using the mean value of the 
feature. " +
    +    "If median, then replace missing values using the median value of the 
feature.",
    +    
ParamValidators.inArray[String](Imputer.supportedStrategyNames.toArray))
    +
    +  /** @group getParam */
    +  def getStrategy: String = $(strategy)
    +
    +  /**
    +   * The placeholder for the missing values. All occurrences of 
missingValue will be imputed.
    +   * Note that null values are always treated as missing.
    +   * Default: Double.NaN
    +   *
    +   * @group param
    +   */
    +  final val missingValue: DoubleParam = new DoubleParam(this, 
"missingValue",
    +    "The placeholder for the missing values. All occurrences of 
missingValue will be imputed")
    +
    +  /** @group getParam */
    +  def getMissingValue: Double = $(missingValue)
    +
    +    /**
    +   * Param for output column names.
    +   * @group param
    +   */
    +  final val outputCols: StringArrayParam = new StringArrayParam(this, 
"outputCols",
    +    "output column names")
    +
    +  /** @group getParam */
    +  final def getOutputCols: Array[String] = $(outputCols)
    +
    +  /** Validates and transforms the input schema. */
    +  protected def validateAndTransformSchema(schema: StructType): StructType 
= {
    +    require($(inputCols).length == $(outputCols).length, "inputCols and 
outputCols should have" +
    +      "the same length")
    +    val localInputCols = $(inputCols)
    +    val localOutputCols = $(outputCols)
    +    var outputSchema = schema
    +
    +    $(inputCols).indices.foreach { i =>
    +      val inputCol = localInputCols(i)
    +      val outputCol = localOutputCols(i)
    +      val inputType = schema(inputCol).dataType
    +      SchemaUtils.checkColumnTypes(schema, inputCol, Seq(DoubleType, 
FloatType))
    +      outputSchema = SchemaUtils.appendColumn(outputSchema, outputCol, 
inputType)
    +    }
    +    outputSchema
    +  }
    +}
    +
    +/**
    + * :: Experimental ::
    + * Imputation estimator for completing missing values, either using the 
mean or the median
    + * of the column in which the missing values are located. The input column 
should be of
    + * DoubleType or FloatType. Currently Imputer does not support categorical 
features yet
    + * (SPARK-15041) and possibly creates incorrect values for a categorical 
feature.
    + *
    + * Note that the mean/median value is computed after filtering out missing 
values.
    + * All Null values in the input column are treated as missing, and so are 
also imputed.
    + */
    +@Experimental
    +class Imputer @Since("2.1.0")(override val uid: String)
    +  extends Estimator[ImputerModel] with ImputerParams with 
DefaultParamsWritable {
    +
    +  @Since("2.1.0")
    +  def this() = this(Identifiable.randomUID("imputer"))
    +
    +  /** @group setParam */
    +  @Since("2.1.0")
    +  def setInputCols(value: Array[String]): this.type = set(inputCols, value)
    +
    +  /** @group setParam */
    +  @Since("2.1.0")
    +  def setOutputCols(value: Array[String]): this.type = set(outputCols, 
value)
    +
    +  /**
    +   * Imputation strategy. Available options are ["mean", "median"].
    +   * @group setParam
    +   */
    +  @Since("2.1.0")
    +  def setStrategy(value: String): this.type = set(strategy, value)
    +
    +  /** @group setParam */
    +  @Since("2.1.0")
    +  def setMissingValue(value: Double): this.type = set(missingValue, value)
    +
    +  setDefault(strategy -> "mean", missingValue -> Double.NaN)
    +
    +  override def fit(dataset: Dataset[_]): ImputerModel = {
    +    transformSchema(dataset.schema, logging = true)
    +    val surrogates = $(inputCols).map { inputCol =>
    +      val ic = col(inputCol)
    +      val filtered = dataset.select(ic.cast(DoubleType))
    +        .filter(ic.isNotNull && ic =!= $(missingValue))
    +        .filter(!ic.isNaN)
    +      if(filtered.rdd.isEmpty()) {
    +        throw new SparkException(s"surrogate cannot be computed. " +
    +          s"All the values in ${inputCol} are Null, Nan or missingValue 
($missingValue)")
    +      }
    +      val surrogate = $(strategy) match {
    +        case "mean" => filtered.select(avg(inputCol)).first().getDouble(0)
    +        case "median" => filtered.stat.approxQuantile(inputCol, 
Array(0.5), 0.001)(0)
    --- End diff --
    
    `.head`


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to