Github user tdas commented on a diff in the pull request:

    https://github.com/apache/spark/pull/2538#discussion_r18193898
  
    --- Diff: python/pyspark/streaming/dstream.py ---
    @@ -0,0 +1,633 @@
    +#
    +# Licensed to the Apache Software Foundation (ASF) under one or more
    +# contributor license agreements.  See the NOTICE file distributed with
    +# this work for additional information regarding copyright ownership.
    +# The ASF licenses this file to You under the Apache License, Version 2.0
    +# (the "License"); you may not use this file except in compliance with
    +# the License.  You may obtain a copy of the License at
    +#
    +#    http://www.apache.org/licenses/LICENSE-2.0
    +#
    +# Unless required by applicable law or agreed to in writing, software
    +# distributed under the License is distributed on an "AS IS" BASIS,
    +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    +# See the License for the specific language governing permissions and
    +# limitations under the License.
    +#
    +
    +from itertools import chain, ifilter, imap
    +import operator
    +import time
    +from datetime import datetime
    +
    +from pyspark import RDD
    +from pyspark.storagelevel import StorageLevel
    +from pyspark.streaming.util import rddToFileName, RDDFunction
    +from pyspark.rdd import portable_hash
    +from pyspark.resultiterable import ResultIterable
    +
    +__all__ = ["DStream"]
    +
    +
    +class DStream(object):
    +    def __init__(self, jdstream, ssc, jrdd_deserializer):
    +        self._jdstream = jdstream
    +        self._ssc = ssc
    +        self.ctx = ssc._sc
    +        self._jrdd_deserializer = jrdd_deserializer
    +        self.is_cached = False
    +        self.is_checkpointed = False
    +
    +    def context(self):
    +        """
    +        Return the StreamingContext associated with this DStream
    +        """
    +        return self._ssc
    +
    +    def count(self):
    +        """
    +        Return a new DStream which contains the number of elements in this 
DStream.
    +        """
    +        return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
    +
    +    def sum(self):
    +        """
    +        Add up the elements in this DStream.
    +        """
    +        return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add)
    +
    +    def filter(self, f):
    +        """
    +        Return a new DStream containing only the elements that satisfy 
predicate.
    +        """
    +        def func(iterator):
    +            return ifilter(f, iterator)
    +        return self.mapPartitions(func, True)
    +
    +    def flatMap(self, f, preservesPartitioning=False):
    +        """
    +        Pass each value in the key-value pair DStream through flatMap 
function
    +        without changing the keys: this also retains the original RDD's 
partition.
    +        """
    +        def func(s, iterator):
    +            return chain.from_iterable(imap(f, iterator))
    +        return self.mapPartitionsWithIndex(func, preservesPartitioning)
    +
    +    def map(self, f, preservesPartitioning=False):
    +        """
    +        Return a new DStream by applying a function to each element of 
DStream.
    +        """
    +        def func(iterator):
    +            return imap(f, iterator)
    +        return self.mapPartitions(func, preservesPartitioning)
    +
    +    def mapPartitions(self, f, preservesPartitioning=False):
    +        """
    +        Return a new DStream by applying a function to each partition of 
this DStream.
    +        """
    +        def func(s, iterator):
    +            return f(iterator)
    +        return self.mapPartitionsWithIndex(func, preservesPartitioning)
    +
    +    def mapPartitionsWithIndex(self, f, preservesPartitioning=False):
    +        """
    +        Return a new DStream by applying a function to each partition of 
this DStream,
    +        while tracking the index of the original partition.
    +        """
    +        return self.transform(lambda rdd: rdd.mapPartitionsWithIndex(f, 
preservesPartitioning))
    +
    +    def reduce(self, func):
    +        """
    +        Return a new DStream by reduceing the elements of this RDD using 
the specified
    +        commutative and associative binary operator.
    +        """
    +        return self.map(lambda x: (None, x)).reduceByKey(func, 
1).map(lambda x: x[1])
    +
    +    def reduceByKey(self, func, numPartitions=None):
    +        """
    +        Merge the value for each key using an associative reduce function.
    +
    +        This will also perform the merging locally on each mapper before
    +        sending results to reducer, similarly to a "combiner" in MapReduce.
    +
    +        Output will be hash-partitioned with C{numPartitions} partitions, 
or
    +        the default parallelism level if C{numPartitions} is not specified.
    +        """
    +        return self.combineByKey(lambda x: x, func, func, numPartitions)
    +
    +    def combineByKey(self, createCombiner, mergeValue, mergeCombiners,
    +                     numPartitions=None):
    +        """
    +        Count the number of elements for each key, and return the result 
to the
    +        master as a dictionary
    +        """
    +        def func(rdd):
    +            return rdd.combineByKey(createCombiner, mergeValue, 
mergeCombiners, numPartitions)
    +        return self.transform(func)
    +
    +    def partitionBy(self, numPartitions, partitionFunc=portable_hash):
    +        """
    +        Return a copy of the DStream partitioned using the specified 
partitioner.
    +        """
    +        return self.transform(lambda rdd: rdd.partitionBy(numPartitions, 
partitionFunc))
    +
    +    def foreach(self, func):
    +        return self.foreachRDD(lambda _, rdd: rdd.foreach(func))
    +
    +    def foreachRDD(self, func):
    +        """
    +        Apply userdefined function to all RDD in a DStream.
    +        This python implementation could be expensive because it uses 
callback server
    +        in order to apply function to RDD in DStream.
    +        This is an output operator, so this DStream will be registered as 
an output
    +        stream and there materialized.
    +        """
    +        jfunc = RDDFunction(self.ctx, func, self._jrdd_deserializer)
    +        api = self._ssc._jvm.PythonDStream
    +        api.callForeachRDD(self._jdstream, jfunc)
    +
    +    def pprint(self):
    +        """
    +        Print the first ten elements of each RDD generated in this 
DStream. This is an output
    +        operator, so this DStream will be registered as an output stream 
and there materialized.
    +        """
    +        def takeAndPrint(timestamp, rdd):
    +            taken = rdd.take(11)
    +            print "-------------------------------------------"
    +            print "Time: %s" % datetime.fromtimestamp(timestamp / 1000.0)
    +            print "-------------------------------------------"
    +            for record in taken[:10]:
    +                print record
    +            if len(taken) > 10:
    +                print "..."
    +            print
    +
    +        self.foreachRDD(takeAndPrint)
    +
    +    def _first(self):
    +        """
    +        Return the first RDD in the stream.
    +        """
    +        return self._take(1)[0]
    +
    +    def _take(self, n):
    +        """
    +        Return the first `n` RDDs in the stream (will start and stop).
    +        """
    +        results = []
    +
    +        def take(_, rdd):
    +            if rdd and len(results) < n:
    +                results.extend(rdd.take(n - len(results)))
    +
    +        self.foreachRDD(take)
    +
    +        self._ssc.start()
    +        while len(results) < n:
    +            time.sleep(0.01)
    +        self._ssc.stop(False, True)
    +        return results
    +
    +    def _collect(self):
    +        """
    +        Collect each RDDs into the returned list.
    +
    +        :return: list, which will have the collected items.
    +        """
    +        result = []
    +
    +        def get_output(_, rdd):
    +            r = rdd.collect()
    +            result.append(r)
    +        self.foreachRDD(get_output)
    +        return result
    +
    +    def mapValues(self, f):
    +        """
    +        Pass each value in the key-value pair RDD through a map function
    +        without changing the keys; this also retains the original RDD's
    +        partitioning.
    +        """
    +        map_values_fn = lambda (k, v): (k, f(v))
    +        return self.map(map_values_fn, preservesPartitioning=True)
    +
    +    def flatMapValues(self, f):
    +        """
    +        Pass each value in the key-value pair RDD through a flatMap 
function
    +        without changing the keys; this also retains the original RDD's
    +        partitioning.
    +        """
    +        flat_map_fn = lambda (k, v): ((k, x) for x in f(v))
    +        return self.flatMap(flat_map_fn, preservesPartitioning=True)
    +
    +    def glom(self):
    +        """
    +        Return a new DStream in which RDD is generated by applying glom()
    +        to RDD of this DStream. Applying glom() to an RDD coalesces all
    +        elements within each partition into an list.
    +        """
    +        def func(iterator):
    +            yield list(iterator)
    +        return self.mapPartitions(func)
    +
    +    def cache(self):
    +        """
    +        Persist this DStream with the default storage level 
(C{MEMORY_ONLY_SER}).
    +        """
    +        self.is_cached = True
    +        self.persist(StorageLevel.MEMORY_ONLY_SER)
    +        return self
    +
    +    def persist(self, storageLevel):
    +        """
    +        Set this DStream's storage level to persist its values across 
operations
    +        after the first time it is computed. This can only be used to 
assign
    +        a new storage level if the DStream does not have a storage level 
set yet.
    +        """
    +        self.is_cached = True
    +        javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel)
    +        self._jdstream.persist(javaStorageLevel)
    +        return self
    +
    +    def checkpoint(self, interval):
    +        """
    +        Mark this DStream for checkpointing. It will be saved to a file 
inside the
    +        checkpoint directory set with L{SparkContext.setCheckpointDir()}
    +
    +        @param interval: time in seconds, after which generated RDD will
    +                         be checkpointed
    +        """
    +        self.is_checkpointed = True
    +        self._jdstream.checkpoint(self._ssc._jduration(interval))
    +        return self
    +
    +    def groupByKey(self, numPartitions=None):
    +        """
    +        Return a new DStream which contains group the values for each key 
in the
    +        DStream into a single sequence.
    +        Hash-partitions the resulting RDD with into numPartitions 
partitions in
    +        the DStream.
    +
    +        Note: If you are grouping in order to perform an aggregation (such 
as a
    +        sum or average) over each key, using reduceByKey will provide much
    +        better performance.
    +        """
    +        return self.transform(lambda rdd: rdd.groupByKey(numPartitions))
    +
    +    def countByValue(self):
    +        """
    +        Return new DStream which contains the count of each unique value 
in this
    +        DStreeam as a (value, count) pairs.
    +        """
    +        return self.map(lambda x: (x, None)).reduceByKey(lambda x, y: 
None).count()
    +
    +    def saveAsTextFiles(self, prefix, suffix=None):
    +        """
    +        Save this DStream as a text file, using string representations of 
elements.
    +        """
    +
    +        def saveAsTextFile(time, rdd):
    +            """
    +            Closure to save element in RDD in DStream as Pickled data in 
file.
    +            This closure is called by py4j callback server.
    +            """
    +            path = rddToFileName(prefix, suffix, time)
    +            rdd.saveAsTextFile(path)
    +
    +        return self.foreachRDD(saveAsTextFile)
    +
    +    def saveAsPickleFiles(self, prefix, suffix=None):
    +        """
    +        Save this DStream as a SequenceFile of serialized objects. The 
serializer
    +        used is L{pyspark.serializers.PickleSerializer}, default batch size
    +        is 10.
    +        """
    +
    +        def saveAsPickleFile(time, rdd):
    +            """
    +            Closure to save element in RDD in the DStream as Pickled data 
in file.
    +            This closure is called by py4j callback server.
    +            """
    +            path = rddToFileName(prefix, suffix, time)
    +            rdd.saveAsPickleFile(path)
    +
    +        return self.foreachRDD(saveAsPickleFile)
    +
    +    def transform(self, func):
    +        """
    +        Return a new DStream in which each RDD is generated by applying a 
function
    +        on each RDD of 'this' DStream.
    +        """
    +        return TransformedDStream(self, lambda t, a: func(a), True)
    +
    +    def transformWithTime(self, func):
    --- End diff --
    
    This does not exist in Scala/Java API. Lets not add this.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to