Github user yanboliang commented on a diff in the pull request: https://github.com/apache/spark/pull/18305#discussion_r125675084 --- Diff: mllib/src/test/scala/org/apache/spark/ml/optim/aggregator/LogisticAggregatorSuite.scala --- @@ -0,0 +1,254 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.ml.optim.aggregator + +import org.apache.spark.SparkFunSuite +import org.apache.spark.ml.feature.Instance +import org.apache.spark.ml.linalg.{BLAS, Matrices, Vector, Vectors} +import org.apache.spark.ml.util.TestingUtils._ +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class LogisticAggregatorSuite extends SparkFunSuite with MLlibTestSparkContext { + + import DifferentiableLossAggregatorSuite.getClassificationSummarizers + + @transient var instances: Array[Instance] = _ + @transient var instancesConstantFeature: Array[Instance] = _ + + override def beforeAll(): Unit = { + super.beforeAll() + instances = Array( + Instance(0.0, 0.1, Vectors.dense(1.0, 2.0)), + Instance(1.0, 0.5, Vectors.dense(1.5, 1.0)), + Instance(2.0, 0.3, Vectors.dense(4.0, 0.5)) + ) + instancesConstantFeature = Array( + Instance(0.0, 0.1, Vectors.dense(1.0, 2.0)), + Instance(1.0, 0.5, Vectors.dense(1.0, 1.0)), + Instance(2.0, 0.3, Vectors.dense(1.0, 0.5)) + ) + } + + + /** Get summary statistics for some data and create a new LogisticAggregator. */ + private def getNewAggregator( + instances: Array[Instance], + coefficients: Vector, + fitIntercept: Boolean, + isMultinomial: Boolean): LogisticAggregator = { + val (featuresSummarizer, ySummarizer) = + DifferentiableLossAggregatorSuite.getClassificationSummarizers(instances) + val numClasses = ySummarizer.histogram.length + val featuresStd = featuresSummarizer.variance.toArray.map(math.sqrt) + val bcFeaturesStd = spark.sparkContext.broadcast(featuresStd) + val bcCoefficients = spark.sparkContext.broadcast(coefficients) --- End diff -- It's better to destroy these broadcast variable explicitly even in test suites.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. --- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org