Github user yanboliang commented on a diff in the pull request:

    https://github.com/apache/spark/pull/18538#discussion_r137240370
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/ml/evaluation/ClusteringEvaluatorSuite.scala
 ---
    @@ -0,0 +1,89 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.ml.evaluation
    +
    +import org.apache.spark.SparkFunSuite
    +import org.apache.spark.ml.linalg.{Vector, Vectors}
    +import org.apache.spark.ml.param.ParamsSuite
    +import org.apache.spark.ml.util.DefaultReadWriteTest
    +import org.apache.spark.ml.util.TestingUtils._
    +import org.apache.spark.mllib.util.MLlibTestSparkContext
    +import org.apache.spark.sql.{DataFrame, SparkSession}
    +
    +
    +private[ml] case class ClusteringEvaluationTestData(features: Vector, 
label: Int)
    +
    +class ClusteringEvaluatorSuite
    +  extends SparkFunSuite with MLlibTestSparkContext with 
DefaultReadWriteTest {
    +
    +  import testImplicits._
    +
    +  test("params") {
    +    ParamsSuite.checkParams(new ClusteringEvaluator)
    +  }
    +
    +  test("read/write") {
    +    val evaluator = new ClusteringEvaluator()
    +      .setPredictionCol("myPrediction")
    +      .setFeaturesCol("myLabel")
    +    testDefaultReadWrite(evaluator)
    +  }
    +
    +  /*
    +    Use the following python code to load the data and evaluate it using 
scikit-learn package.
    +
    +    from sklearn import datasets
    +    from sklearn.metrics import silhouette_score
    +    iris = datasets.load_iris()
    +    round(silhouette_score(iris.data, iris.target, metric='sqeuclidean'), 
10)
    +
    +    0.6564679231
    +  */
    +  test("squared euclidean Silhouette") {
    +    val iris = ClusteringEvaluatorSuite.irisDataset(spark)
    +    val evaluator = new ClusteringEvaluator()
    +        .setFeaturesCol("features")
    +        .setPredictionCol("label")
    +
    +    assert(evaluator.evaluate(iris) ~== 0.6564679231 relTol 1e-10)
    --- End diff --
    
    Check with tolerance 1e-5 is good enough.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to