Github user ueshin commented on a diff in the pull request: https://github.com/apache/spark/pull/18732#discussion_r141807573 --- Diff: sql/core/src/main/scala/org/apache/spark/sql/execution/python/FlatMapGroupsInPandasExec.scala --- @@ -0,0 +1,95 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.python + +import scala.collection.JavaConverters._ + +import org.apache.spark.TaskContext +import org.apache.spark.api.python.{ChainedPythonFunctions, PythonEvalType} +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions.{Ascending, Attribute, AttributeSet, Expression, NamedExpression, SortOrder, UnsafeProjection} +import org.apache.spark.sql.catalyst.plans.physical.{ClusteredDistribution, Distribution, Partitioning} +import org.apache.spark.sql.execution.{GroupedIterator, SparkPlan, UnaryExecNode} + +case class FlatMapGroupsInPandasExec( + grouping: Seq[Expression], + func: Expression, + override val output: Seq[Attribute], + override val child: SparkPlan +) extends UnaryExecNode { + + val groupingAttributes: Seq[Attribute] = grouping.map { + case ne: NamedExpression => ne.toAttribute + } + + private val pandasFunction = func.asInstanceOf[PythonUDF].func + + override def outputPartitioning: Partitioning = child.outputPartitioning + + override def producedAttributes: AttributeSet = AttributeSet(output) + + override def requiredChildDistribution: Seq[Distribution] = + ClusteredDistribution(groupingAttributes) :: Nil + + override def requiredChildOrdering: Seq[Seq[SortOrder]] = + Seq(groupingAttributes.map(SortOrder(_, Ascending))) + + override protected def doExecute(): RDD[InternalRow] = { + val inputRDD = child.execute() + + val bufferSize = inputRDD.conf.getInt("spark.buffer.size", 65536) + val reuseWorker = inputRDD.conf.getBoolean("spark.python.worker.reuse", defaultValue = true) + val chainedFunc = Seq(ChainedPythonFunctions(Seq(pandasFunction))) + val argOffsets = Array((0 until child.schema.length).toArray) + + inputRDD.mapPartitionsInternal { iter => + val grouped = GroupedIterator(iter, groupingAttributes, child.output) --- End diff -- We should use `grouping` instead of `groupingAttributes` here?
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org