Github user mridulm commented on a diff in the pull request:

    https://github.com/apache/spark/pull/19468#discussion_r146979317
  
    --- Diff: 
resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterSchedulerBackend.scala
 ---
    @@ -0,0 +1,440 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.spark.scheduler.cluster.k8s
    +
    +import java.io.Closeable
    +import java.net.InetAddress
    +import java.util.concurrent.{ConcurrentHashMap, ExecutorService, 
ScheduledExecutorService, TimeUnit}
    +import java.util.concurrent.atomic.{AtomicInteger, AtomicLong, 
AtomicReference}
    +
    +import scala.collection.JavaConverters._
    +import scala.collection.mutable
    +import scala.concurrent.{ExecutionContext, Future}
    +
    +import io.fabric8.kubernetes.api.model._
    +import io.fabric8.kubernetes.client.{KubernetesClient, 
KubernetesClientException, Watcher}
    +import io.fabric8.kubernetes.client.Watcher.Action
    +
    +import org.apache.spark.SparkException
    +import org.apache.spark.deploy.k8s.config._
    +import org.apache.spark.deploy.k8s.constants._
    +import org.apache.spark.rpc.{RpcAddress, RpcEndpointAddress, RpcEnv}
    +import org.apache.spark.scheduler.{ExecutorExited, SlaveLost, 
TaskSchedulerImpl}
    +import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend
    +import org.apache.spark.util.Utils
    +
    +private[spark] class KubernetesClusterSchedulerBackend(
    +    scheduler: TaskSchedulerImpl,
    +    rpcEnv: RpcEnv,
    +    executorPodFactory: ExecutorPodFactory,
    +    kubernetesClient: KubernetesClient,
    +    allocatorExecutor: ScheduledExecutorService,
    +    requestExecutorsService: ExecutorService)
    +  extends CoarseGrainedSchedulerBackend(scheduler, rpcEnv) {
    +
    +  import KubernetesClusterSchedulerBackend._
    +
    +  private val EXECUTOR_ID_COUNTER = new AtomicLong(0L)
    +  private val RUNNING_EXECUTOR_PODS_LOCK = new Object
    +  // Indexed by executor IDs and guarded by RUNNING_EXECUTOR_PODS_LOCK.
    +  private val runningExecutorsToPods = new mutable.HashMap[String, Pod]
    +  // Indexed by executor pod names and guarded by 
RUNNING_EXECUTOR_PODS_LOCK.
    +  private val runningPodsToExecutors = new mutable.HashMap[String, String]
    +  private val executorPodsByIPs = new ConcurrentHashMap[String, Pod]()
    +  private val podsWithKnownExitReasons = new ConcurrentHashMap[String, 
ExecutorExited]()
    +  private val disconnectedPodsByExecutorIdPendingRemoval = new 
ConcurrentHashMap[String, Pod]()
    +
    +  private val kubernetesNamespace = conf.get(KUBERNETES_NAMESPACE)
    +
    +  private val kubernetesDriverPodName = conf
    +    .get(KUBERNETES_DRIVER_POD_NAME)
    +    .getOrElse(throw new SparkException("Must specify the driver pod 
name"))
    +  private implicit val requestExecutorContext = 
ExecutionContext.fromExecutorService(
    +    requestExecutorsService)
    +
    +  private val driverPod = try {
    +    kubernetesClient.pods()
    +      .inNamespace(kubernetesNamespace)
    +      .withName(kubernetesDriverPodName)
    +      .get()
    +  } catch {
    +    case throwable: Throwable =>
    +      logError(s"Executor cannot find driver pod.", throwable)
    +      throw new SparkException(s"Executor cannot find driver pod", 
throwable)
    +  }
    +
    +  override val minRegisteredRatio =
    +    if 
(conf.getOption("spark.scheduler.minRegisteredResourcesRatio").isEmpty) {
    +      0.8
    +    } else {
    +      super.minRegisteredRatio
    +    }
    +
    +  private val executorWatchResource = new AtomicReference[Closeable]
    +  protected val totalExpectedExecutors = new AtomicInteger(0)
    +
    +  private val driverUrl = RpcEndpointAddress(
    +    conf.get("spark.driver.host"),
    +    conf.getInt("spark.driver.port", DEFAULT_DRIVER_PORT),
    +    CoarseGrainedSchedulerBackend.ENDPOINT_NAME).toString
    +
    +  private val initialExecutors = getInitialTargetExecutorNumber()
    +
    +  private val podAllocationInterval = 
conf.get(KUBERNETES_ALLOCATION_BATCH_DELAY)
    +  require(podAllocationInterval > 0, s"Allocation batch delay " +
    +    s"${KUBERNETES_ALLOCATION_BATCH_DELAY} " +
    +    s"is ${podAllocationInterval}, should be a positive integer")
    +
    +  private val podAllocationSize = 
conf.get(KUBERNETES_ALLOCATION_BATCH_SIZE)
    +  require(podAllocationSize > 0, s"Allocation batch size " +
    +    s"${KUBERNETES_ALLOCATION_BATCH_SIZE} " +
    +    s"is ${podAllocationSize}, should be a positive integer")
    +
    +  private val allocatorRunnable = new Runnable {
    +
    +    // Maintains a map of executor id to count of checks performed to 
learn the loss reason
    +    // for an executor.
    +    private val executorReasonCheckAttemptCounts = new 
mutable.HashMap[String, Int]
    +
    +    override def run(): Unit = {
    +      handleDisconnectedExecutors()
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        if (totalRegisteredExecutors.get() < runningExecutorsToPods.size) {
    +          logDebug("Waiting for pending executors before scaling")
    +        } else if (totalExpectedExecutors.get() <= 
runningExecutorsToPods.size) {
    +          logDebug("Maximum allowed executor limit reached. Not scaling up 
further.")
    +        } else {
    +          val nodeToLocalTaskCount = getNodesWithLocalTaskCounts
    +          for (i <- 0 until math.min(
    +            totalExpectedExecutors.get - runningExecutorsToPods.size, 
podAllocationSize)) {
    +            val (executorId, pod) = 
allocateNewExecutorPod(nodeToLocalTaskCount)
    +            runningExecutorsToPods.put(executorId, pod)
    +            runningPodsToExecutors.put(pod.getMetadata.getName, executorId)
    +            logInfo(
    +              s"Requesting a new executor, total executors is now 
${runningExecutorsToPods.size}")
    +          }
    +        }
    +      }
    +    }
    +
    +    def handleDisconnectedExecutors(): Unit = {
    +      // For each disconnected executor, synchronize with the loss reasons 
that may have been found
    +      // by the executor pod watcher. If the loss reason was discovered by 
the watcher,
    +      // inform the parent class with removeExecutor.
    +      disconnectedPodsByExecutorIdPendingRemoval.keys().asScala.foreach { 
case (executorId) =>
    +        val executorPod = 
disconnectedPodsByExecutorIdPendingRemoval.get(executorId)
    +        val knownExitReason = Option(podsWithKnownExitReasons.remove(
    +          executorPod.getMetadata.getName))
    +        knownExitReason.fold {
    +          removeExecutorOrIncrementLossReasonCheckCount(executorId)
    +        } { executorExited =>
    +          logDebug(s"Removing executor $executorId with loss reason " + 
executorExited.message)
    +          removeExecutor(executorId, executorExited)
    +          // We keep around executors that have exit conditions caused by 
the application. This
    +          // allows them to be debugged later on. Otherwise, mark them as 
to be deleted from the
    +          // the API server.
    +          if (!executorExited.exitCausedByApp) {
    +            deleteExecutorFromClusterAndDataStructures(executorId)
    +          }
    +        }
    +      }
    +    }
    +
    +    def removeExecutorOrIncrementLossReasonCheckCount(executorId: String): 
Unit = {
    +      val reasonCheckCount = 
executorReasonCheckAttemptCounts.getOrElse(executorId, 0)
    +      if (reasonCheckCount >= MAX_EXECUTOR_LOST_REASON_CHECKS) {
    +        removeExecutor(executorId, SlaveLost("Executor lost for unknown 
reasons."))
    +        deleteExecutorFromClusterAndDataStructures(executorId)
    +      } else {
    +        executorReasonCheckAttemptCounts.put(executorId, reasonCheckCount 
+ 1)
    +      }
    +    }
    +
    +    def deleteExecutorFromClusterAndDataStructures(executorId: String): 
Unit = {
    +      disconnectedPodsByExecutorIdPendingRemoval.remove(executorId)
    +      executorReasonCheckAttemptCounts -= executorId
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        runningExecutorsToPods.remove(executorId).map { pod =>
    +          kubernetesClient.pods().delete(pod)
    +          runningPodsToExecutors.remove(pod.getMetadata.getName)
    +        }.getOrElse(logWarning(s"Unable to remove pod for unknown executor 
$executorId"))
    +      }
    +    }
    +  }
    +
    +  private def getInitialTargetExecutorNumber(defaultNumExecutors: Int = 
1): Int = {
    +    if (Utils.isDynamicAllocationEnabled(conf)) {
    +      val minNumExecutors = 
conf.getInt("spark.dynamicAllocation.minExecutors", 0)
    +      val initialNumExecutors = 
Utils.getDynamicAllocationInitialExecutors(conf)
    +      val maxNumExecutors = 
conf.getInt("spark.dynamicAllocation.maxExecutors", 1)
    +      require(initialNumExecutors >= minNumExecutors && 
initialNumExecutors <= maxNumExecutors,
    +        s"initial executor number $initialNumExecutors must between min 
executor number " +
    +          s"$minNumExecutors and max executor number $maxNumExecutors")
    +
    +      initialNumExecutors
    +    } else {
    +      conf.getInt("spark.executor.instances", defaultNumExecutors)
    +    }
    +
    +  }
    +
    +  override def applicationId(): String = conf.get("spark.app.id", 
super.applicationId())
    +
    +  override def sufficientResourcesRegistered(): Boolean = {
    +    totalRegisteredExecutors.get() >= initialExecutors * minRegisteredRatio
    +  }
    +
    +  override def start(): Unit = {
    +    super.start()
    +    executorWatchResource.set(
    +      kubernetesClient
    +        .pods()
    +        .withLabel(SPARK_APP_ID_LABEL, applicationId())
    +        .watch(new ExecutorPodsWatcher()))
    +
    +    allocatorExecutor.scheduleWithFixedDelay(
    +      allocatorRunnable, 0L, podAllocationInterval, TimeUnit.SECONDS)
    +
    +    if (!Utils.isDynamicAllocationEnabled(conf)) {
    +      doRequestTotalExecutors(initialExecutors)
    +    }
    +  }
    +
    +  override def stop(): Unit = {
    +    // stop allocation of new resources and caches.
    +    allocatorExecutor.shutdown()
    +
    +    // send stop message to executors so they shut down cleanly
    +    super.stop()
    +
    +    // then delete the executor pods
    +    // TODO investigate why Utils.tryLogNonFatalError() doesn't work in 
this context.
    +    // When using Utils.tryLogNonFatalError some of the code fails but 
without any logs or
    +    // indication as to why.
    +    try {
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        
runningExecutorsToPods.values.foreach(kubernetesClient.pods().delete(_))
    +        runningExecutorsToPods.clear()
    +        runningPodsToExecutors.clear()
    +      }
    +      executorPodsByIPs.clear()
    +      val resource = executorWatchResource.getAndSet(null)
    +      if (resource != null) {
    +        resource.close()
    +      }
    +    } catch {
    +      case e: Throwable => logError("Uncaught exception while shutting 
down controllers.", e)
    +    }
    +    try {
    +      logInfo("Closing kubernetes client")
    +      kubernetesClient.close()
    +    } catch {
    +      case e: Throwable => logError("Uncaught exception closing Kubernetes 
client.", e)
    +    }
    +  }
    +
    +  /**
    +   * @return A map of K8s cluster nodes to the number of tasks that could 
benefit from data
    +   *         locality if an executor launches on the cluster node.
    +   */
    +  private def getNodesWithLocalTaskCounts() : Map[String, Int] = {
    +    val nodeToLocalTaskCount = mutable.Map[String, Int]() ++
    +      KubernetesClusterSchedulerBackend.this.synchronized {
    +        hostToLocalTaskCount
    +      }
    +    for (pod <- executorPodsByIPs.values().asScala) {
    +      // Remove cluster nodes that are running our executors already.
    +      // TODO: This prefers spreading out executors across nodes. In case 
users want
    +      // consolidating executors on fewer nodes, introduce a flag. See the 
spark.deploy.spreadOut
    +      // flag that Spark standalone has: 
https://spark.apache.org/docs/latest/spark-standalone.html
    +      nodeToLocalTaskCount.remove(pod.getSpec.getNodeName).nonEmpty ||
    +        nodeToLocalTaskCount.remove(pod.getStatus.getHostIP).nonEmpty ||
    +        nodeToLocalTaskCount.remove(
    +          
InetAddress.getByName(pod.getStatus.getHostIP).getCanonicalHostName).nonEmpty
    +    }
    +    nodeToLocalTaskCount.toMap[String, Int]
    +  }
    +
    +  /**
    +   * Allocates a new executor pod
    +   *
    +   * @param nodeToLocalTaskCount  A map of K8s cluster nodes to the number 
of tasks that could
    +   *                              benefit from data locality if an 
executor launches on the cluster
    +   *                              node.
    +   * @return A tuple of the new executor name and the Pod data structure.
    +   */
    +  private def allocateNewExecutorPod(nodeToLocalTaskCount: Map[String, 
Int]): (String, Pod) = {
    +    val executorId = EXECUTOR_ID_COUNTER.incrementAndGet().toString
    +    val executorPod = executorPodFactory.createExecutorPod(
    +      executorId,
    +      applicationId(),
    +      driverUrl,
    +      conf.getExecutorEnv,
    +      driverPod,
    +      nodeToLocalTaskCount)
    +    try {
    +      (executorId, kubernetesClient.pods.create(executorPod))
    +    } catch {
    +      case throwable: Throwable =>
    +        logError("Failed to allocate executor pod.", throwable)
    +        throw throwable
    +    }
    +  }
    +
    +  override def doRequestTotalExecutors(requestedTotal: Int): 
Future[Boolean] = Future[Boolean] {
    +    totalExpectedExecutors.set(requestedTotal)
    +    true
    +  }
    +
    +  override def doKillExecutors(executorIds: Seq[String]): Future[Boolean] 
= Future[Boolean] {
    +    RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +      for (executor <- executorIds) {
    +        val maybeRemovedExecutor = runningExecutorsToPods.remove(executor)
    +        maybeRemovedExecutor.foreach { executorPod =>
    +          kubernetesClient.pods().delete(executorPod)
    +          disconnectedPodsByExecutorIdPendingRemoval.put(executor, 
executorPod)
    +          runningPodsToExecutors.remove(executorPod.getMetadata.getName)
    +        }
    +        if (maybeRemovedExecutor.isEmpty) {
    +          logWarning(s"Unable to remove pod for unknown executor 
$executor")
    +        }
    +      }
    +    }
    +    true
    +  }
    +
    +  def getExecutorPodByIP(podIP: String): Option[Pod] = {
    +    // Note: Per 
https://github.com/databricks/scala-style-guide#concurrency, we don't
    +    // want to be switching to scala.collection.concurrent.Map on
    +    // executorPodsByIPs.
    --- End diff --
    
    Please remove this comment, or refer to 
http://spark.apache.org/contributing.html#code-style-guide if relevant.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to