Github user mridulm commented on a diff in the pull request: https://github.com/apache/spark/pull/19468#discussion_r146979317 --- Diff: resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterSchedulerBackend.scala --- @@ -0,0 +1,440 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.scheduler.cluster.k8s + +import java.io.Closeable +import java.net.InetAddress +import java.util.concurrent.{ConcurrentHashMap, ExecutorService, ScheduledExecutorService, TimeUnit} +import java.util.concurrent.atomic.{AtomicInteger, AtomicLong, AtomicReference} + +import scala.collection.JavaConverters._ +import scala.collection.mutable +import scala.concurrent.{ExecutionContext, Future} + +import io.fabric8.kubernetes.api.model._ +import io.fabric8.kubernetes.client.{KubernetesClient, KubernetesClientException, Watcher} +import io.fabric8.kubernetes.client.Watcher.Action + +import org.apache.spark.SparkException +import org.apache.spark.deploy.k8s.config._ +import org.apache.spark.deploy.k8s.constants._ +import org.apache.spark.rpc.{RpcAddress, RpcEndpointAddress, RpcEnv} +import org.apache.spark.scheduler.{ExecutorExited, SlaveLost, TaskSchedulerImpl} +import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend +import org.apache.spark.util.Utils + +private[spark] class KubernetesClusterSchedulerBackend( + scheduler: TaskSchedulerImpl, + rpcEnv: RpcEnv, + executorPodFactory: ExecutorPodFactory, + kubernetesClient: KubernetesClient, + allocatorExecutor: ScheduledExecutorService, + requestExecutorsService: ExecutorService) + extends CoarseGrainedSchedulerBackend(scheduler, rpcEnv) { + + import KubernetesClusterSchedulerBackend._ + + private val EXECUTOR_ID_COUNTER = new AtomicLong(0L) + private val RUNNING_EXECUTOR_PODS_LOCK = new Object + // Indexed by executor IDs and guarded by RUNNING_EXECUTOR_PODS_LOCK. + private val runningExecutorsToPods = new mutable.HashMap[String, Pod] + // Indexed by executor pod names and guarded by RUNNING_EXECUTOR_PODS_LOCK. + private val runningPodsToExecutors = new mutable.HashMap[String, String] + private val executorPodsByIPs = new ConcurrentHashMap[String, Pod]() + private val podsWithKnownExitReasons = new ConcurrentHashMap[String, ExecutorExited]() + private val disconnectedPodsByExecutorIdPendingRemoval = new ConcurrentHashMap[String, Pod]() + + private val kubernetesNamespace = conf.get(KUBERNETES_NAMESPACE) + + private val kubernetesDriverPodName = conf + .get(KUBERNETES_DRIVER_POD_NAME) + .getOrElse(throw new SparkException("Must specify the driver pod name")) + private implicit val requestExecutorContext = ExecutionContext.fromExecutorService( + requestExecutorsService) + + private val driverPod = try { + kubernetesClient.pods() + .inNamespace(kubernetesNamespace) + .withName(kubernetesDriverPodName) + .get() + } catch { + case throwable: Throwable => + logError(s"Executor cannot find driver pod.", throwable) + throw new SparkException(s"Executor cannot find driver pod", throwable) + } + + override val minRegisteredRatio = + if (conf.getOption("spark.scheduler.minRegisteredResourcesRatio").isEmpty) { + 0.8 + } else { + super.minRegisteredRatio + } + + private val executorWatchResource = new AtomicReference[Closeable] + protected val totalExpectedExecutors = new AtomicInteger(0) + + private val driverUrl = RpcEndpointAddress( + conf.get("spark.driver.host"), + conf.getInt("spark.driver.port", DEFAULT_DRIVER_PORT), + CoarseGrainedSchedulerBackend.ENDPOINT_NAME).toString + + private val initialExecutors = getInitialTargetExecutorNumber() + + private val podAllocationInterval = conf.get(KUBERNETES_ALLOCATION_BATCH_DELAY) + require(podAllocationInterval > 0, s"Allocation batch delay " + + s"${KUBERNETES_ALLOCATION_BATCH_DELAY} " + + s"is ${podAllocationInterval}, should be a positive integer") + + private val podAllocationSize = conf.get(KUBERNETES_ALLOCATION_BATCH_SIZE) + require(podAllocationSize > 0, s"Allocation batch size " + + s"${KUBERNETES_ALLOCATION_BATCH_SIZE} " + + s"is ${podAllocationSize}, should be a positive integer") + + private val allocatorRunnable = new Runnable { + + // Maintains a map of executor id to count of checks performed to learn the loss reason + // for an executor. + private val executorReasonCheckAttemptCounts = new mutable.HashMap[String, Int] + + override def run(): Unit = { + handleDisconnectedExecutors() + RUNNING_EXECUTOR_PODS_LOCK.synchronized { + if (totalRegisteredExecutors.get() < runningExecutorsToPods.size) { + logDebug("Waiting for pending executors before scaling") + } else if (totalExpectedExecutors.get() <= runningExecutorsToPods.size) { + logDebug("Maximum allowed executor limit reached. Not scaling up further.") + } else { + val nodeToLocalTaskCount = getNodesWithLocalTaskCounts + for (i <- 0 until math.min( + totalExpectedExecutors.get - runningExecutorsToPods.size, podAllocationSize)) { + val (executorId, pod) = allocateNewExecutorPod(nodeToLocalTaskCount) + runningExecutorsToPods.put(executorId, pod) + runningPodsToExecutors.put(pod.getMetadata.getName, executorId) + logInfo( + s"Requesting a new executor, total executors is now ${runningExecutorsToPods.size}") + } + } + } + } + + def handleDisconnectedExecutors(): Unit = { + // For each disconnected executor, synchronize with the loss reasons that may have been found + // by the executor pod watcher. If the loss reason was discovered by the watcher, + // inform the parent class with removeExecutor. + disconnectedPodsByExecutorIdPendingRemoval.keys().asScala.foreach { case (executorId) => + val executorPod = disconnectedPodsByExecutorIdPendingRemoval.get(executorId) + val knownExitReason = Option(podsWithKnownExitReasons.remove( + executorPod.getMetadata.getName)) + knownExitReason.fold { + removeExecutorOrIncrementLossReasonCheckCount(executorId) + } { executorExited => + logDebug(s"Removing executor $executorId with loss reason " + executorExited.message) + removeExecutor(executorId, executorExited) + // We keep around executors that have exit conditions caused by the application. This + // allows them to be debugged later on. Otherwise, mark them as to be deleted from the + // the API server. + if (!executorExited.exitCausedByApp) { + deleteExecutorFromClusterAndDataStructures(executorId) + } + } + } + } + + def removeExecutorOrIncrementLossReasonCheckCount(executorId: String): Unit = { + val reasonCheckCount = executorReasonCheckAttemptCounts.getOrElse(executorId, 0) + if (reasonCheckCount >= MAX_EXECUTOR_LOST_REASON_CHECKS) { + removeExecutor(executorId, SlaveLost("Executor lost for unknown reasons.")) + deleteExecutorFromClusterAndDataStructures(executorId) + } else { + executorReasonCheckAttemptCounts.put(executorId, reasonCheckCount + 1) + } + } + + def deleteExecutorFromClusterAndDataStructures(executorId: String): Unit = { + disconnectedPodsByExecutorIdPendingRemoval.remove(executorId) + executorReasonCheckAttemptCounts -= executorId + RUNNING_EXECUTOR_PODS_LOCK.synchronized { + runningExecutorsToPods.remove(executorId).map { pod => + kubernetesClient.pods().delete(pod) + runningPodsToExecutors.remove(pod.getMetadata.getName) + }.getOrElse(logWarning(s"Unable to remove pod for unknown executor $executorId")) + } + } + } + + private def getInitialTargetExecutorNumber(defaultNumExecutors: Int = 1): Int = { + if (Utils.isDynamicAllocationEnabled(conf)) { + val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0) + val initialNumExecutors = Utils.getDynamicAllocationInitialExecutors(conf) + val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors", 1) + require(initialNumExecutors >= minNumExecutors && initialNumExecutors <= maxNumExecutors, + s"initial executor number $initialNumExecutors must between min executor number " + + s"$minNumExecutors and max executor number $maxNumExecutors") + + initialNumExecutors + } else { + conf.getInt("spark.executor.instances", defaultNumExecutors) + } + + } + + override def applicationId(): String = conf.get("spark.app.id", super.applicationId()) + + override def sufficientResourcesRegistered(): Boolean = { + totalRegisteredExecutors.get() >= initialExecutors * minRegisteredRatio + } + + override def start(): Unit = { + super.start() + executorWatchResource.set( + kubernetesClient + .pods() + .withLabel(SPARK_APP_ID_LABEL, applicationId()) + .watch(new ExecutorPodsWatcher())) + + allocatorExecutor.scheduleWithFixedDelay( + allocatorRunnable, 0L, podAllocationInterval, TimeUnit.SECONDS) + + if (!Utils.isDynamicAllocationEnabled(conf)) { + doRequestTotalExecutors(initialExecutors) + } + } + + override def stop(): Unit = { + // stop allocation of new resources and caches. + allocatorExecutor.shutdown() + + // send stop message to executors so they shut down cleanly + super.stop() + + // then delete the executor pods + // TODO investigate why Utils.tryLogNonFatalError() doesn't work in this context. + // When using Utils.tryLogNonFatalError some of the code fails but without any logs or + // indication as to why. + try { + RUNNING_EXECUTOR_PODS_LOCK.synchronized { + runningExecutorsToPods.values.foreach(kubernetesClient.pods().delete(_)) + runningExecutorsToPods.clear() + runningPodsToExecutors.clear() + } + executorPodsByIPs.clear() + val resource = executorWatchResource.getAndSet(null) + if (resource != null) { + resource.close() + } + } catch { + case e: Throwable => logError("Uncaught exception while shutting down controllers.", e) + } + try { + logInfo("Closing kubernetes client") + kubernetesClient.close() + } catch { + case e: Throwable => logError("Uncaught exception closing Kubernetes client.", e) + } + } + + /** + * @return A map of K8s cluster nodes to the number of tasks that could benefit from data + * locality if an executor launches on the cluster node. + */ + private def getNodesWithLocalTaskCounts() : Map[String, Int] = { + val nodeToLocalTaskCount = mutable.Map[String, Int]() ++ + KubernetesClusterSchedulerBackend.this.synchronized { + hostToLocalTaskCount + } + for (pod <- executorPodsByIPs.values().asScala) { + // Remove cluster nodes that are running our executors already. + // TODO: This prefers spreading out executors across nodes. In case users want + // consolidating executors on fewer nodes, introduce a flag. See the spark.deploy.spreadOut + // flag that Spark standalone has: https://spark.apache.org/docs/latest/spark-standalone.html + nodeToLocalTaskCount.remove(pod.getSpec.getNodeName).nonEmpty || + nodeToLocalTaskCount.remove(pod.getStatus.getHostIP).nonEmpty || + nodeToLocalTaskCount.remove( + InetAddress.getByName(pod.getStatus.getHostIP).getCanonicalHostName).nonEmpty + } + nodeToLocalTaskCount.toMap[String, Int] + } + + /** + * Allocates a new executor pod + * + * @param nodeToLocalTaskCount A map of K8s cluster nodes to the number of tasks that could + * benefit from data locality if an executor launches on the cluster + * node. + * @return A tuple of the new executor name and the Pod data structure. + */ + private def allocateNewExecutorPod(nodeToLocalTaskCount: Map[String, Int]): (String, Pod) = { + val executorId = EXECUTOR_ID_COUNTER.incrementAndGet().toString + val executorPod = executorPodFactory.createExecutorPod( + executorId, + applicationId(), + driverUrl, + conf.getExecutorEnv, + driverPod, + nodeToLocalTaskCount) + try { + (executorId, kubernetesClient.pods.create(executorPod)) + } catch { + case throwable: Throwable => + logError("Failed to allocate executor pod.", throwable) + throw throwable + } + } + + override def doRequestTotalExecutors(requestedTotal: Int): Future[Boolean] = Future[Boolean] { + totalExpectedExecutors.set(requestedTotal) + true + } + + override def doKillExecutors(executorIds: Seq[String]): Future[Boolean] = Future[Boolean] { + RUNNING_EXECUTOR_PODS_LOCK.synchronized { + for (executor <- executorIds) { + val maybeRemovedExecutor = runningExecutorsToPods.remove(executor) + maybeRemovedExecutor.foreach { executorPod => + kubernetesClient.pods().delete(executorPod) + disconnectedPodsByExecutorIdPendingRemoval.put(executor, executorPod) + runningPodsToExecutors.remove(executorPod.getMetadata.getName) + } + if (maybeRemovedExecutor.isEmpty) { + logWarning(s"Unable to remove pod for unknown executor $executor") + } + } + } + true + } + + def getExecutorPodByIP(podIP: String): Option[Pod] = { + // Note: Per https://github.com/databricks/scala-style-guide#concurrency, we don't + // want to be switching to scala.collection.concurrent.Map on + // executorPodsByIPs. --- End diff -- Please remove this comment, or refer to http://spark.apache.org/contributing.html#code-style-guide if relevant.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org