Github user mridulm commented on a diff in the pull request:

    https://github.com/apache/spark/pull/19468#discussion_r153331617
  
    --- Diff: 
resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterSchedulerBackend.scala
 ---
    @@ -0,0 +1,432 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.spark.scheduler.cluster.k8s
    +
    +import java.io.Closeable
    +import java.net.InetAddress
    +import java.util.concurrent.{ConcurrentHashMap, ExecutorService, 
ScheduledExecutorService, TimeUnit}
    +import java.util.concurrent.atomic.{AtomicInteger, AtomicLong, 
AtomicReference}
    +import javax.annotation.concurrent.GuardedBy
    +
    +import io.fabric8.kubernetes.api.model._
    +import io.fabric8.kubernetes.client.{KubernetesClient, 
KubernetesClientException, Watcher}
    +import io.fabric8.kubernetes.client.Watcher.Action
    +import scala.collection.JavaConverters._
    +import scala.collection.mutable
    +import scala.concurrent.{ExecutionContext, Future}
    +
    +import org.apache.spark.SparkException
    +import org.apache.spark.deploy.k8s.Config._
    +import org.apache.spark.deploy.k8s.Constants._
    +import org.apache.spark.rpc.{RpcAddress, RpcEndpointAddress, RpcEnv}
    +import org.apache.spark.scheduler.{ExecutorExited, SlaveLost, 
TaskSchedulerImpl}
    +import org.apache.spark.scheduler.cluster.{CoarseGrainedSchedulerBackend, 
SchedulerBackendUtils}
    +import org.apache.spark.util.Utils
    +
    +private[spark] class KubernetesClusterSchedulerBackend(
    +    scheduler: TaskSchedulerImpl,
    +    rpcEnv: RpcEnv,
    +    executorPodFactory: ExecutorPodFactory,
    +    kubernetesClient: KubernetesClient,
    +    allocatorExecutor: ScheduledExecutorService,
    +    requestExecutorsService: ExecutorService)
    +  extends CoarseGrainedSchedulerBackend(scheduler, rpcEnv) {
    +
    +  import KubernetesClusterSchedulerBackend._
    +
    +  private val EXECUTOR_ID_COUNTER = new AtomicLong(0L)
    +  private val RUNNING_EXECUTOR_PODS_LOCK = new Object
    +  @GuardedBy("RUNNING_EXECUTOR_PODS_LOCK")
    +  private val runningExecutorsToPods = new mutable.HashMap[String, Pod]
    +  private val executorPodsByIPs = new ConcurrentHashMap[String, Pod]()
    +  private val podsWithKnownExitReasons = new ConcurrentHashMap[String, 
ExecutorExited]()
    +  private val disconnectedPodsByExecutorIdPendingRemoval = new 
ConcurrentHashMap[String, Pod]()
    +
    +  private val kubernetesNamespace = conf.get(KUBERNETES_NAMESPACE)
    +
    +  private val kubernetesDriverPodName = conf
    +    .get(KUBERNETES_DRIVER_POD_NAME)
    +    .getOrElse(throw new SparkException("Must specify the driver pod 
name"))
    +  private implicit val requestExecutorContext = 
ExecutionContext.fromExecutorService(
    +    requestExecutorsService)
    +
    +  private val driverPod = kubernetesClient.pods()
    +    .inNamespace(kubernetesNamespace)
    +    .withName(kubernetesDriverPodName)
    +    .get()
    +
    +  protected override val minRegisteredRatio =
    +    if 
(conf.getOption("spark.scheduler.minRegisteredResourcesRatio").isEmpty) {
    +      0.8
    +    } else {
    +      super.minRegisteredRatio
    +    }
    +
    +  private val executorWatchResource = new AtomicReference[Closeable]
    +  private val totalExpectedExecutors = new AtomicInteger(0)
    +
    +  private val driverUrl = RpcEndpointAddress(
    +    conf.get("spark.driver.host"),
    +    conf.getInt("spark.driver.port", DEFAULT_DRIVER_PORT),
    +    CoarseGrainedSchedulerBackend.ENDPOINT_NAME).toString
    +
    +  private val initialExecutors = 
SchedulerBackendUtils.getInitialTargetExecutorNumber(conf)
    +
    +  private val podAllocationInterval = 
conf.get(KUBERNETES_ALLOCATION_BATCH_DELAY)
    +
    +  private val podAllocationSize = 
conf.get(KUBERNETES_ALLOCATION_BATCH_SIZE)
    +
    +  private val allocatorRunnable = new Runnable {
    +
    +    // Maintains a map of executor id to count of checks performed to 
learn the loss reason
    +    // for an executor.
    +    private val executorReasonCheckAttemptCounts = new 
mutable.HashMap[String, Int]
    +
    +    override def run(): Unit = {
    +      handleDisconnectedExecutors()
    +
    +      val executorsToAllocate = mutable.Map[String, Pod]()
    +      val currentTotalRegisteredExecutors = totalRegisteredExecutors.get
    +      val currentTotalExpectedExecutors = totalExpectedExecutors.get
    +      val currentNodeToLocalTaskCount = getNodesWithLocalTaskCounts()
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        if (currentTotalRegisteredExecutors < runningExecutorsToPods.size) 
{
    +          logDebug("Waiting for pending executors before scaling")
    +        } else if (currentTotalExpectedExecutors <= 
runningExecutorsToPods.size) {
    +          logDebug("Maximum allowed executor limit reached. Not scaling up 
further.")
    +        } else {
    +          for (i <- 0 until math.min(
    +            currentTotalExpectedExecutors - runningExecutorsToPods.size, 
podAllocationSize)) {
    +            val executorId = EXECUTOR_ID_COUNTER.incrementAndGet().toString
    +            val executorPod = executorPodFactory.createExecutorPod(
    +              executorId,
    +              applicationId(),
    +              driverUrl,
    +              conf.getExecutorEnv,
    +              driverPod,
    +              currentNodeToLocalTaskCount)
    +            executorsToAllocate(executorId) = executorPod
    +            logInfo(
    +              s"Requesting a new executor, total executors is now 
${runningExecutorsToPods.size}")
    +          }
    +        }
    +      }
    +
    +      val allocatedExecutors = executorsToAllocate.mapValues { pod =>
    +        Utils.tryLog {
    +          kubernetesClient.pods().create(pod)
    +        }
    +      }
    +
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        allocatedExecutors.map {
    +          case (executorId, attemptedAllocatedExecutor) =>
    +            attemptedAllocatedExecutor.map { successfullyAllocatedExecutor 
=>
    +              runningExecutorsToPods.put(executorId, 
successfullyAllocatedExecutor)
    +            }
    +        }
    +      }
    +    }
    +
    +    def handleDisconnectedExecutors(): Unit = {
    +      // For each disconnected executor, synchronize with the loss reasons 
that may have been found
    +      // by the executor pod watcher. If the loss reason was discovered by 
the watcher,
    +      // inform the parent class with removeExecutor.
    +      disconnectedPodsByExecutorIdPendingRemoval.asScala.foreach {
    +        case (executorId, executorPod) =>
    +          val knownExitReason = Option(podsWithKnownExitReasons.remove(
    +            executorPod.getMetadata.getName))
    +          knownExitReason.fold {
    +            removeExecutorOrIncrementLossReasonCheckCount(executorId)
    +          } { executorExited =>
    +            logWarning(s"Removing executor $executorId with loss reason " 
+ executorExited.message)
    +            removeExecutor(executorId, executorExited)
    +            // We don't delete the pod running the executor that has an 
exit condition caused by
    +            // the application from the Kubernetes API server. This allows 
users to debug later on
    +            // through commands such as "kubectl logs <pod name>" and
    +            // "kubectl describe pod <pod name>". Note that exited 
containers have terminated and
    +            // therefore won't take CPU and memory resources.
    +            // Otherwise, the executor pod is marked to be deleted from 
the API server.
    +            if (executorExited.exitCausedByApp) {
    +              logInfo(s"Executor $executorId exited because of the 
application.")
    +              deleteExecutorFromDataStructures(executorId)
    +            } else {
    +              logInfo(s"Executor $executorId failed because of a framework 
error.")
    +              deleteExecutorFromClusterAndDataStructures(executorId)
    +            }
    +          }
    +      }
    +    }
    +
    +    def removeExecutorOrIncrementLossReasonCheckCount(executorId: String): 
Unit = {
    +      val reasonCheckCount = 
executorReasonCheckAttemptCounts.getOrElse(executorId, 0)
    +      if (reasonCheckCount >= MAX_EXECUTOR_LOST_REASON_CHECKS) {
    +        removeExecutor(executorId, SlaveLost("Executor lost for unknown 
reasons."))
    +        deleteExecutorFromClusterAndDataStructures(executorId)
    +      } else {
    +        executorReasonCheckAttemptCounts.put(executorId, reasonCheckCount 
+ 1)
    +      }
    +    }
    +
    +    def deleteExecutorFromClusterAndDataStructures(executorId: String): 
Unit = {
    +      deleteExecutorFromDataStructures(executorId).foreach { pod =>
    +        kubernetesClient.pods().delete(pod)
    +      }
    +    }
    +
    +    def deleteExecutorFromDataStructures(executorId: String): Option[Pod] 
= {
    +      disconnectedPodsByExecutorIdPendingRemoval.remove(executorId)
    +      executorReasonCheckAttemptCounts -= executorId
    +      podsWithKnownExitReasons.remove(executorId)
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        runningExecutorsToPods.remove(executorId).orElse {
    +          logWarning(s"Unable to remove pod for unknown executor 
$executorId")
    +          None
    +        }
    +      }
    +    }
    +  }
    +
    +  override def sufficientResourcesRegistered(): Boolean = {
    +    totalRegisteredExecutors.get() >= initialExecutors * minRegisteredRatio
    +  }
    +
    +  override def start(): Unit = {
    +    super.start()
    +    executorWatchResource.set(
    +      kubernetesClient
    +        .pods()
    +        .withLabel(SPARK_APP_ID_LABEL, applicationId())
    +        .watch(new ExecutorPodsWatcher()))
    +
    +    allocatorExecutor.scheduleWithFixedDelay(
    +      allocatorRunnable, 0L, podAllocationInterval, TimeUnit.SECONDS)
    +
    +    if (!Utils.isDynamicAllocationEnabled(conf)) {
    +      doRequestTotalExecutors(initialExecutors)
    +    }
    +  }
    +
    +  override def stop(): Unit = {
    +    // stop allocation of new resources and caches.
    +    allocatorExecutor.shutdown()
    +
    +    // send stop message to executors so they shut down cleanly
    +    super.stop()
    +
    +    // then delete the executor pods
    +    Utils.tryLogNonFatalError {
    +      val executorPodsToDelete = RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        val runningExecutorPodsCopy = 
Seq(runningExecutorsToPods.values.toSeq: _*)
    +        runningExecutorsToPods.clear()
    +        runningExecutorPodsCopy
    +      }
    +      kubernetesClient.pods().delete(executorPodsToDelete: _*)
    +      executorPodsByIPs.clear()
    +      val resource = executorWatchResource.getAndSet(null)
    +      if (resource != null) {
    +        resource.close()
    +      }
    +    }
    +    Utils.tryLogNonFatalError {
    +      logInfo("Closing kubernetes client")
    +      kubernetesClient.close()
    +    }
    +  }
    +
    +  /**
    +   * @return A map of K8s cluster nodes to the number of tasks that could 
benefit from data
    +   *         locality if an executor launches on the cluster node.
    +   */
    +  private def getNodesWithLocalTaskCounts() : Map[String, Int] = {
    +    val nodeToLocalTaskCount = synchronized {
    +      mutable.Map[String, Int]() ++ hostToLocalTaskCount
    +    }
    +
    +    for (pod <- executorPodsByIPs.values().asScala) {
    +      // Remove cluster nodes that are running our executors already.
    +      // TODO: This prefers spreading out executors across nodes. In case 
users want
    +      // consolidating executors on fewer nodes, introduce a flag. See the 
spark.deploy.spreadOut
    +      // flag that Spark standalone has: 
https://spark.apache.org/docs/latest/spark-standalone.html
    +      nodeToLocalTaskCount.remove(pod.getSpec.getNodeName).nonEmpty ||
    +        nodeToLocalTaskCount.remove(pod.getStatus.getHostIP).nonEmpty ||
    +        nodeToLocalTaskCount.remove(
    +          
InetAddress.getByName(pod.getStatus.getHostIP).getCanonicalHostName).nonEmpty
    +    }
    +    nodeToLocalTaskCount.toMap[String, Int]
    +  }
    +
    +  override def doRequestTotalExecutors(requestedTotal: Int): 
Future[Boolean] = Future[Boolean] {
    +    totalExpectedExecutors.set(requestedTotal)
    +    true
    +  }
    +
    +  override def doKillExecutors(executorIds: Seq[String]): Future[Boolean] 
= Future[Boolean] {
    +    val podsToDelete = RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +      executorIds.flatMap { executorId =>
    +        runningExecutorsToPods.remove(executorId) match {
    +          case Some(pod) =>
    +            disconnectedPodsByExecutorIdPendingRemoval.put(executorId, pod)
    +            Some(pod)
    +
    +          case None =>
    +            logWarning(s"Unable to remove pod for unknown executor 
$executorId")
    +            None
    +        }
    +      }
    +    }
    +
    +    kubernetesClient.pods().delete(podsToDelete: _*)
    +    true
    +  }
    +
    +  private class ExecutorPodsWatcher extends Watcher[Pod] {
    +
    +    private val DEFAULT_CONTAINER_FAILURE_EXIT_STATUS = -1
    +
    +    override def eventReceived(action: Action, pod: Pod): Unit = {
    +      val podName = pod.getMetadata.getName
    +      val podIP = pod.getStatus.getPodIP
    +
    +      action match {
    +        case Action.MODIFIED if (pod.getStatus.getPhase == "Running"
    +            && pod.getMetadata.getDeletionTimestamp == null) =>
    +          val clusterNodeName = pod.getSpec.getNodeName
    +          logInfo(s"Executor pod $podName ready, launched at 
$clusterNodeName as IP $podIP.")
    +          executorPodsByIPs.put(podIP, pod)
    +
    +        case Action.DELETED | Action.ERROR =>
    +          val executorId = getExecutorId(pod)
    +          logDebug(s"Executor pod $podName at IP $podIP was at $action.")
    +          if (podIP != null) {
    +            executorPodsByIPs.remove(podIP)
    +          }
    +
    +          val executorExitReason = if (action == Action.ERROR) {
    +            logWarning(s"Received error event of executor pod $podName. 
Reason: " +
    +              pod.getStatus.getReason)
    +            executorExitReasonOnError(pod)
    +          } else if (action == Action.DELETED) {
    +            logWarning(s"Received delete event of executor pod $podName. 
Reason: " +
    +              pod.getStatus.getReason)
    +            executorExitReasonOnDelete(pod)
    +          } else {
    +            throw new IllegalStateException(
    +              s"Unknown action that should only be DELETED or ERROR: 
$action")
    +          }
    +          podsWithKnownExitReasons.put(pod.getMetadata.getName, 
executorExitReason)
    +
    +          if 
(!disconnectedPodsByExecutorIdPendingRemoval.containsKey(executorId)) {
    +            log.warn(s"Executor with id $executorId was not marked as 
disconnected, but the" +
    +              s" watch received an event of type $action for this 
executor. The executor may" +
    +              " have failed to start in the first place and never 
registered with the driver.")
    +          }
    +          disconnectedPodsByExecutorIdPendingRemoval.put(executorId, pod)
    +
    +        case _ => logDebug(s"Received event of executor pod $podName: " + 
action)
    +      }
    +    }
    +
    +    override def onClose(cause: KubernetesClientException): Unit = {
    +      logDebug("Executor pod watch closed.", cause)
    +    }
    +
    +    private def getExecutorExitStatus(pod: Pod): Int = {
    +      val containerStatuses = pod.getStatus.getContainerStatuses
    +      if (!containerStatuses.isEmpty) {
    +        // we assume the first container represents the pod status. This 
assumption may not hold
    +        // true in the future. Revisit this if side-car containers start 
running inside executor
    +        // pods.
    +        getExecutorExitStatus(containerStatuses.get(0))
    +      } else DEFAULT_CONTAINER_FAILURE_EXIT_STATUS
    +    }
    +
    +    private def getExecutorExitStatus(containerStatus: ContainerStatus): 
Int = {
    +      Option(containerStatus.getState).map { containerState =>
    +        Option(containerState.getTerminated).map { 
containerStateTerminated =>
    +          containerStateTerminated.getExitCode.intValue()
    +        }.getOrElse(UNKNOWN_EXIT_CODE)
    +      }.getOrElse(UNKNOWN_EXIT_CODE)
    +    }
    +
    +    private def isPodAlreadyReleased(pod: Pod): Boolean = {
    +      val executorId = 
pod.getMetadata.getLabels.get(SPARK_EXECUTOR_ID_LABEL)
    +      RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +        !runningExecutorsToPods.contains(executorId)
    +      }
    +    }
    +
    +    private def executorExitReasonOnError(pod: Pod): ExecutorExited = {
    +      val containerExitStatus = getExecutorExitStatus(pod)
    +      // container was probably actively killed by the driver.
    +      if (isPodAlreadyReleased(pod)) {
    +        ExecutorExited(containerExitStatus, exitCausedByApp = false,
    +          s"Container in pod ${pod.getMetadata.getName} exited from 
explicit termination" +
    +            " request.")
    +      } else {
    +        val containerExitReason = s"Pod ${pod.getMetadata.getName}'s 
executor container " +
    +          s"exited with exit status code $containerExitStatus."
    +        ExecutorExited(containerExitStatus, exitCausedByApp = true, 
containerExitReason)
    +      }
    +    }
    +
    +    private def executorExitReasonOnDelete(pod: Pod): ExecutorExited = {
    +      val exitMessage = if (isPodAlreadyReleased(pod)) {
    +        s"Container in pod ${pod.getMetadata.getName} exited from explicit 
termination request."
    +      } else {
    +        s"Pod ${pod.getMetadata.getName} deleted or lost."
    +      }
    +      ExecutorExited(getExecutorExitStatus(pod), exitCausedByApp = false, 
exitMessage)
    +    }
    +
    +    private def getExecutorId(pod: Pod): String = {
    +      val executorId = 
pod.getMetadata.getLabels.get(SPARK_EXECUTOR_ID_LABEL)
    +      require(executorId != null, "Unexpected pod metadata; expected all 
executor pods " +
    +        s"to have label $SPARK_EXECUTOR_ID_LABEL.")
    +      executorId
    +    }
    +  }
    +
    +  override def createDriverEndpoint(properties: Seq[(String, String)]): 
DriverEndpoint = {
    +    new KubernetesDriverEndpoint(rpcEnv, properties)
    +  }
    +
    +  private class KubernetesDriverEndpoint(
    +      rpcEnv: RpcEnv,
    +      sparkProperties: Seq[(String, String)])
    +    extends DriverEndpoint(rpcEnv, sparkProperties) {
    +
    +    override def onDisconnected(rpcAddress: RpcAddress): Unit = {
    +      addressToExecutorId.get(rpcAddress).foreach { executorId =>
    +        if (disableExecutor(executorId)) {
    +          RUNNING_EXECUTOR_PODS_LOCK.synchronized {
    +            runningExecutorsToPods.get(executorId).foreach { pod =>
    +              disconnectedPodsByExecutorIdPendingRemoval.put(executorId, 
pod)
    +            }
    +          }
    +        }
    +      }
    +    }
    +  }
    +}
    +
    +private object KubernetesClusterSchedulerBackend {
    +  private val UNKNOWN_EXIT_CODE = -1
    +  // Number of times we are allowed check for the loss reason for an 
executor before we give up
    +  // and assume the executor failed for good, and attribute it to a 
framework fault.
    +  val MAX_EXECUTOR_LOST_REASON_CHECKS = 10
    --- End diff --
    
    This is getting pushed from remote server, right ?
    Which effectively means there can be arbitrary delays - either due to 
remote server, local node, networking infra in between - or something else. We 
cannot assume quick turnaround.
    In addition, as I mentioned above, batch delay is user configured - and can 
be set aggresively by user.
    
    Not that I am necessarily advocating for customization - if it is a smart 
default which will never be breached, it is fine ! I want to understand if it 
is.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to