Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/19527#discussion_r158861023
  
    --- Diff: 
mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoderEstimator.scala 
---
    @@ -0,0 +1,519 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.ml.feature
    +
    +import org.apache.hadoop.fs.Path
    +
    +import org.apache.spark.SparkException
    +import org.apache.spark.annotation.Since
    +import org.apache.spark.ml.{Estimator, Model}
    +import org.apache.spark.ml.attribute._
    +import org.apache.spark.ml.linalg.Vectors
    +import org.apache.spark.ml.param._
    +import org.apache.spark.ml.param.shared.{HasHandleInvalid, HasInputCols, 
HasOutputCols}
    +import org.apache.spark.ml.util._
    +import org.apache.spark.sql.{DataFrame, Dataset}
    +import org.apache.spark.sql.expressions.UserDefinedFunction
    +import org.apache.spark.sql.functions.{col, lit, udf}
    +import org.apache.spark.sql.types.{DoubleType, NumericType, StructField, 
StructType}
    +
    +/** Private trait for params and common methods for OneHotEncoderEstimator 
and OneHotEncoderModel */
    +private[ml] trait OneHotEncoderBase extends Params with HasHandleInvalid
    +    with HasInputCols with HasOutputCols {
    +
    +  /**
    +   * Param for how to handle invalid data.
    +   * Options are 'keep' (invalid data presented as an extra categorical 
feature) or
    +   * 'error' (throw an error).
    +   * Default: "error"
    +   * @group param
    +   */
    +  @Since("2.3.0")
    +  override val handleInvalid: Param[String] = new Param[String](this, 
"handleInvalid",
    +    "How to handle invalid data " +
    +    "Options are 'keep' (invalid data presented as an extra categorical 
feature) " +
    +    "or error (throw an error).",
    +    
ParamValidators.inArray(OneHotEncoderEstimator.supportedHandleInvalids))
    +
    +  setDefault(handleInvalid, OneHotEncoderEstimator.ERROR_INVALID)
    +
    +  /**
    +   * Whether to drop the last category in the encoded vector (default: 
true)
    +   * @group param
    +   */
    +  @Since("2.3.0")
    +  final val dropLast: BooleanParam =
    +    new BooleanParam(this, "dropLast", "whether to drop the last category")
    +  setDefault(dropLast -> true)
    +
    +  /** @group getParam */
    +  @Since("2.3.0")
    +  def getDropLast: Boolean = $(dropLast)
    +
    +  protected def validateAndTransformSchema(
    +      schema: StructType, dropLast: Boolean, keepInvalid: Boolean): 
StructType = {
    +    val inputColNames = $(inputCols)
    +    val outputColNames = $(outputCols)
    +    val existingFields = schema.fields
    +
    +    require(inputColNames.length == outputColNames.length,
    +      s"The number of input columns ${inputColNames.length} must be the 
same as the number of " +
    +        s"output columns ${outputColNames.length}.")
    +
    +    // Input columns must be NumericType.
    +    inputColNames.foreach(SchemaUtils.checkNumericType(schema, _))
    +
    +    // Prepares output columns with proper attributes by examining input 
columns.
    +    val inputFields = $(inputCols).map(schema(_))
    +
    +    val outputFields = inputFields.zip(outputColNames).map { case 
(inputField, outputColName) =>
    +      OneHotEncoderCommon.transformOutputColumnSchema(
    +        inputField, outputColName, dropLast, keepInvalid)
    +    }
    +    outputFields.foldLeft(schema) { case (newSchema, outputField) =>
    +      SchemaUtils.appendColumn(newSchema, outputField)
    +    }
    +  }
    +}
    +
    +/**
    + * A one-hot encoder that maps a column of category indices to a column of 
binary vectors, with
    + * at most a single one-value per row that indicates the input category 
index.
    + * For example with 5 categories, an input value of 2.0 would map to an 
output vector of
    + * `[0.0, 0.0, 1.0, 0.0]`.
    + * The last category is not included by default (configurable via 
`dropLast`),
    + * because it makes the vector entries sum up to one, and hence linearly 
dependent.
    + * So an input value of 4.0 maps to `[0.0, 0.0, 0.0, 0.0]`.
    + *
    + * @note This is different from scikit-learn's OneHotEncoder, which keeps 
all categories.
    + * The output vectors are sparse.
    + *
    + * When `handleInvalid` is configured to 'keep', an extra "category" 
indicating invalid values is
    + * added as last category. So when `dropLast` is true, invalid values are 
encoded as all-zeros
    + * vector.
    + *
    + * @note When encoding multi-column by using `inputCols` and `outputCols` 
params, input/output cols
    + * come in pairs, specified by the order in the arrays, and each pair is 
treated independently.
    + *
    + * @see `StringIndexer` for converting categorical values into category 
indices
    + */
    +@Since("2.3.0")
    +class OneHotEncoderEstimator @Since("2.3.0") (@Since("2.3.0") override val 
uid: String)
    +    extends Estimator[OneHotEncoderModel] with OneHotEncoderBase with 
DefaultParamsWritable {
    +
    +  @Since("2.3.0")
    +  def this() = this(Identifiable.randomUID("oneHotEncoder"))
    +
    +  /** @group setParam */
    +  @Since("2.3.0")
    +  def setInputCols(values: Array[String]): this.type = set(inputCols, 
values)
    +
    +  /** @group setParam */
    +  @Since("2.3.0")
    +  def setOutputCols(values: Array[String]): this.type = set(outputCols, 
values)
    +
    +  /** @group setParam */
    +  @Since("2.3.0")
    +  def setDropLast(value: Boolean): this.type = set(dropLast, value)
    +
    +  /** @group setParam */
    +  @Since("2.3.0")
    +  def setHandleInvalid(value: String): this.type = set(handleInvalid, 
value)
    +
    +  @Since("2.3.0")
    +  override def transformSchema(schema: StructType): StructType = {
    +    // When fitting data, we want the the plain number of categories 
without `handleInvalid` and
    --- End diff --
    
    This isn't correct.  If handleInvalid or dropLast are set, then 
transformSchema should take them into account.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to