Github user jkbradley commented on a diff in the pull request: https://github.com/apache/spark/pull/19527#discussion_r158861023 --- Diff: mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoderEstimator.scala --- @@ -0,0 +1,519 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.ml.feature + +import org.apache.hadoop.fs.Path + +import org.apache.spark.SparkException +import org.apache.spark.annotation.Since +import org.apache.spark.ml.{Estimator, Model} +import org.apache.spark.ml.attribute._ +import org.apache.spark.ml.linalg.Vectors +import org.apache.spark.ml.param._ +import org.apache.spark.ml.param.shared.{HasHandleInvalid, HasInputCols, HasOutputCols} +import org.apache.spark.ml.util._ +import org.apache.spark.sql.{DataFrame, Dataset} +import org.apache.spark.sql.expressions.UserDefinedFunction +import org.apache.spark.sql.functions.{col, lit, udf} +import org.apache.spark.sql.types.{DoubleType, NumericType, StructField, StructType} + +/** Private trait for params and common methods for OneHotEncoderEstimator and OneHotEncoderModel */ +private[ml] trait OneHotEncoderBase extends Params with HasHandleInvalid + with HasInputCols with HasOutputCols { + + /** + * Param for how to handle invalid data. + * Options are 'keep' (invalid data presented as an extra categorical feature) or + * 'error' (throw an error). + * Default: "error" + * @group param + */ + @Since("2.3.0") + override val handleInvalid: Param[String] = new Param[String](this, "handleInvalid", + "How to handle invalid data " + + "Options are 'keep' (invalid data presented as an extra categorical feature) " + + "or error (throw an error).", + ParamValidators.inArray(OneHotEncoderEstimator.supportedHandleInvalids)) + + setDefault(handleInvalid, OneHotEncoderEstimator.ERROR_INVALID) + + /** + * Whether to drop the last category in the encoded vector (default: true) + * @group param + */ + @Since("2.3.0") + final val dropLast: BooleanParam = + new BooleanParam(this, "dropLast", "whether to drop the last category") + setDefault(dropLast -> true) + + /** @group getParam */ + @Since("2.3.0") + def getDropLast: Boolean = $(dropLast) + + protected def validateAndTransformSchema( + schema: StructType, dropLast: Boolean, keepInvalid: Boolean): StructType = { + val inputColNames = $(inputCols) + val outputColNames = $(outputCols) + val existingFields = schema.fields + + require(inputColNames.length == outputColNames.length, + s"The number of input columns ${inputColNames.length} must be the same as the number of " + + s"output columns ${outputColNames.length}.") + + // Input columns must be NumericType. + inputColNames.foreach(SchemaUtils.checkNumericType(schema, _)) + + // Prepares output columns with proper attributes by examining input columns. + val inputFields = $(inputCols).map(schema(_)) + + val outputFields = inputFields.zip(outputColNames).map { case (inputField, outputColName) => + OneHotEncoderCommon.transformOutputColumnSchema( + inputField, outputColName, dropLast, keepInvalid) + } + outputFields.foldLeft(schema) { case (newSchema, outputField) => + SchemaUtils.appendColumn(newSchema, outputField) + } + } +} + +/** + * A one-hot encoder that maps a column of category indices to a column of binary vectors, with + * at most a single one-value per row that indicates the input category index. + * For example with 5 categories, an input value of 2.0 would map to an output vector of + * `[0.0, 0.0, 1.0, 0.0]`. + * The last category is not included by default (configurable via `dropLast`), + * because it makes the vector entries sum up to one, and hence linearly dependent. + * So an input value of 4.0 maps to `[0.0, 0.0, 0.0, 0.0]`. + * + * @note This is different from scikit-learn's OneHotEncoder, which keeps all categories. + * The output vectors are sparse. + * + * When `handleInvalid` is configured to 'keep', an extra "category" indicating invalid values is + * added as last category. So when `dropLast` is true, invalid values are encoded as all-zeros + * vector. + * + * @note When encoding multi-column by using `inputCols` and `outputCols` params, input/output cols + * come in pairs, specified by the order in the arrays, and each pair is treated independently. + * + * @see `StringIndexer` for converting categorical values into category indices + */ +@Since("2.3.0") +class OneHotEncoderEstimator @Since("2.3.0") (@Since("2.3.0") override val uid: String) + extends Estimator[OneHotEncoderModel] with OneHotEncoderBase with DefaultParamsWritable { + + @Since("2.3.0") + def this() = this(Identifiable.randomUID("oneHotEncoder")) + + /** @group setParam */ + @Since("2.3.0") + def setInputCols(values: Array[String]): this.type = set(inputCols, values) + + /** @group setParam */ + @Since("2.3.0") + def setOutputCols(values: Array[String]): this.type = set(outputCols, values) + + /** @group setParam */ + @Since("2.3.0") + def setDropLast(value: Boolean): this.type = set(dropLast, value) + + /** @group setParam */ + @Since("2.3.0") + def setHandleInvalid(value: String): this.type = set(handleInvalid, value) + + @Since("2.3.0") + override def transformSchema(schema: StructType): StructType = { + // When fitting data, we want the the plain number of categories without `handleInvalid` and --- End diff -- This isn't correct. If handleInvalid or dropLast are set, then transformSchema should take them into account.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org