Github user cloud-fan commented on a diff in the pull request: https://github.com/apache/spark/pull/20013#discussion_r160332614 --- Diff: core/src/main/scala/org/apache/spark/status/AppStatusStore.scala --- @@ -110,107 +114,238 @@ private[spark] class AppStatusStore( if (details) stageWithDetails(stage) else stage } + def taskCount(stageId: Int, stageAttemptId: Int): Long = { + store.count(classOf[TaskDataWrapper], "stage", Array(stageId, stageAttemptId)) + } + + def localitySummary(stageId: Int, stageAttemptId: Int): Map[String, Long] = { + store.read(classOf[StageDataWrapper], Array(stageId, stageAttemptId)).locality + } + + /** + * Calculates a summary of the task metrics for the given stage attempt, returning the + * requested quantiles for the recorded metrics. + * + * This method can be expensive if the requested quantiles are not cached; the method + * will only cache certain quantiles (every 0.05 step), so it's recommended to stick to + * those to avoid expensive scans of all task data. + */ def taskSummary( stageId: Int, stageAttemptId: Int, - quantiles: Array[Double]): v1.TaskMetricDistributions = { - - val stage = Array(stageId, stageAttemptId) - - val rawMetrics = store.view(classOf[TaskDataWrapper]) - .index("stage") - .first(stage) - .last(stage) - .asScala - .flatMap(_.info.taskMetrics) - .toList - .view - - def metricQuantiles(f: v1.TaskMetrics => Double): IndexedSeq[Double] = - Distribution(rawMetrics.map { d => f(d) }).get.getQuantiles(quantiles) - - // We need to do a lot of similar munging to nested metrics here. For each one, - // we want (a) extract the values for nested metrics (b) make a distribution for each metric - // (c) shove the distribution into the right field in our return type and (d) only return - // a result if the option is defined for any of the tasks. MetricHelper is a little util - // to make it a little easier to deal w/ all of the nested options. Mostly it lets us just - // implement one "build" method, which just builds the quantiles for each field. - - val inputMetrics = - new MetricHelper[v1.InputMetrics, v1.InputMetricDistributions](rawMetrics, quantiles) { - def getSubmetrics(raw: v1.TaskMetrics): v1.InputMetrics = raw.inputMetrics - - def build: v1.InputMetricDistributions = new v1.InputMetricDistributions( - bytesRead = submetricQuantiles(_.bytesRead), - recordsRead = submetricQuantiles(_.recordsRead) - ) - }.build - - val outputMetrics = - new MetricHelper[v1.OutputMetrics, v1.OutputMetricDistributions](rawMetrics, quantiles) { - def getSubmetrics(raw: v1.TaskMetrics): v1.OutputMetrics = raw.outputMetrics - - def build: v1.OutputMetricDistributions = new v1.OutputMetricDistributions( - bytesWritten = submetricQuantiles(_.bytesWritten), - recordsWritten = submetricQuantiles(_.recordsWritten) - ) - }.build - - val shuffleReadMetrics = - new MetricHelper[v1.ShuffleReadMetrics, v1.ShuffleReadMetricDistributions](rawMetrics, - quantiles) { - def getSubmetrics(raw: v1.TaskMetrics): v1.ShuffleReadMetrics = - raw.shuffleReadMetrics - - def build: v1.ShuffleReadMetricDistributions = new v1.ShuffleReadMetricDistributions( - readBytes = submetricQuantiles { s => s.localBytesRead + s.remoteBytesRead }, - readRecords = submetricQuantiles(_.recordsRead), - remoteBytesRead = submetricQuantiles(_.remoteBytesRead), - remoteBytesReadToDisk = submetricQuantiles(_.remoteBytesReadToDisk), - remoteBlocksFetched = submetricQuantiles(_.remoteBlocksFetched), - localBlocksFetched = submetricQuantiles(_.localBlocksFetched), - totalBlocksFetched = submetricQuantiles { s => - s.localBlocksFetched + s.remoteBlocksFetched - }, - fetchWaitTime = submetricQuantiles(_.fetchWaitTime) - ) - }.build - - val shuffleWriteMetrics = - new MetricHelper[v1.ShuffleWriteMetrics, v1.ShuffleWriteMetricDistributions](rawMetrics, - quantiles) { - def getSubmetrics(raw: v1.TaskMetrics): v1.ShuffleWriteMetrics = - raw.shuffleWriteMetrics - - def build: v1.ShuffleWriteMetricDistributions = new v1.ShuffleWriteMetricDistributions( - writeBytes = submetricQuantiles(_.bytesWritten), - writeRecords = submetricQuantiles(_.recordsWritten), - writeTime = submetricQuantiles(_.writeTime) - ) - }.build - - new v1.TaskMetricDistributions( + unsortedQuantiles: Array[Double]): Option[v1.TaskMetricDistributions] = { + val stageKey = Array(stageId, stageAttemptId) + val quantiles = unsortedQuantiles.sorted + + // We don't know how many tasks remain in the store that actually have metrics. So scan one + // metric and count how many valid tasks there are. Use skip() instead of next() since it's + // cheaper for disk stores (avoids deserialization). + val count = { + Utils.tryWithResource( + store.view(classOf[TaskDataWrapper]) + .parent(stageKey) + .index(TaskIndexNames.EXEC_RUN_TIME) + .first(0L) + .closeableIterator() + ) { it => + var _count = 0L + while (it.hasNext()) { + _count += 1 + it.skip(1) + } + _count + } + } + + if (count <= 0) { + return None + } + + // Find out which quantiles are already cached. The data in the store must match the expected + // task count to be considered, otherwise it will be re-scanned and overwritten. + val cachedQuantiles = quantiles.filter(shouldCacheQuantile).flatMap { q => + val qkey = Array(stageId, stageAttemptId, quantileToString(q)) + asOption(store.read(classOf[CachedQuantile], qkey)).filter(_.taskCount == count) + } + + // If there are no missing quantiles, return the data. Otherwise, just compute everything + // to make the code simpler. + if (cachedQuantiles.size == quantiles.size) { + def toValues(fn: CachedQuantile => Double): IndexedSeq[Double] = cachedQuantiles.map(fn) + + val distributions = new v1.TaskMetricDistributions( + quantiles = quantiles, + executorDeserializeTime = toValues(_.executorDeserializeTime), + executorDeserializeCpuTime = toValues(_.executorDeserializeCpuTime), + executorRunTime = toValues(_.executorRunTime), + executorCpuTime = toValues(_.executorCpuTime), + resultSize = toValues(_.resultSize), + jvmGcTime = toValues(_.jvmGcTime), + resultSerializationTime = toValues(_.resultSerializationTime), + gettingResultTime = toValues(_.gettingResultTime), + schedulerDelay = toValues(_.schedulerDelay), + peakExecutionMemory = toValues(_.peakExecutionMemory), + memoryBytesSpilled = toValues(_.memoryBytesSpilled), + diskBytesSpilled = toValues(_.diskBytesSpilled), + inputMetrics = new v1.InputMetricDistributions( + toValues(_.bytesRead), + toValues(_.recordsRead)), + outputMetrics = new v1.OutputMetricDistributions( + toValues(_.bytesWritten), + toValues(_.recordsWritten)), + shuffleReadMetrics = new v1.ShuffleReadMetricDistributions( + toValues(_.shuffleReadBytes), + toValues(_.shuffleRecordsRead), + toValues(_.shuffleRemoteBlocksFetched), + toValues(_.shuffleLocalBlocksFetched), + toValues(_.shuffleFetchWaitTime), + toValues(_.shuffleRemoteBytesRead), + toValues(_.shuffleRemoteBytesReadToDisk), + toValues(_.shuffleTotalBlocksFetched)), + shuffleWriteMetrics = new v1.ShuffleWriteMetricDistributions( + toValues(_.shuffleWriteBytes), + toValues(_.shuffleWriteRecords), + toValues(_.shuffleWriteTime))) + + return Some(distributions) + } + + // Compute quantiles by scanning the tasks in the store. This is not really stable for live + // stages (e.g. the number of recorded tasks may change while this code is running), but should + // stabilize once the stage finishes. It's also slow, especially with disk stores. + val indices = quantiles.map { q => math.min((q * count).toLong, count - 1) } + + def scanTasks(index: String)(fn: TaskDataWrapper => Long): IndexedSeq[Double] = { + Utils.tryWithResource( + store.view(classOf[TaskDataWrapper]) + .parent(stageKey) + .index(index) + .first(0L) + .closeableIterator() + ) { it => + var last = Double.NaN + var currentIdx = -1L + indices.map { idx => + if (idx == currentIdx) { + last + } else { + val diff = idx - currentIdx + currentIdx = idx + if (it.skip(diff - 1)) { + last = fn(it.next()).toDouble + last + } else { + Double.NaN + } + } + }.toIndexedSeq + } + } + + val computedQuantiles = new v1.TaskMetricDistributions( quantiles = quantiles, - executorDeserializeTime = metricQuantiles(_.executorDeserializeTime), - executorDeserializeCpuTime = metricQuantiles(_.executorDeserializeCpuTime), - executorRunTime = metricQuantiles(_.executorRunTime), - executorCpuTime = metricQuantiles(_.executorCpuTime), - resultSize = metricQuantiles(_.resultSize), - jvmGcTime = metricQuantiles(_.jvmGcTime), - resultSerializationTime = metricQuantiles(_.resultSerializationTime), - memoryBytesSpilled = metricQuantiles(_.memoryBytesSpilled), - diskBytesSpilled = metricQuantiles(_.diskBytesSpilled), - inputMetrics = inputMetrics, - outputMetrics = outputMetrics, - shuffleReadMetrics = shuffleReadMetrics, - shuffleWriteMetrics = shuffleWriteMetrics - ) + executorDeserializeTime = scanTasks(TaskIndexNames.DESER_TIME) { t => + t.executorDeserializeTime + }, + executorDeserializeCpuTime = scanTasks(TaskIndexNames.DESER_CPU_TIME) { t => + t.executorDeserializeCpuTime + }, + executorRunTime = scanTasks(TaskIndexNames.EXEC_RUN_TIME) { t => t.executorRunTime }, + executorCpuTime = scanTasks(TaskIndexNames.EXEC_CPU_TIME) { t => t.executorCpuTime }, + resultSize = scanTasks(TaskIndexNames.RESULT_SIZE) { t => t.resultSize }, + jvmGcTime = scanTasks(TaskIndexNames.GC_TIME) { t => t.jvmGcTime }, + resultSerializationTime = scanTasks(TaskIndexNames.SER_TIME) { t => + t.resultSerializationTime + }, + gettingResultTime = scanTasks(TaskIndexNames.GETTING_RESULT_TIME) { t => + t.gettingResultTime + }, + schedulerDelay = scanTasks(TaskIndexNames.SCHEDULER_DELAY) { t => t.schedulerDelay }, + peakExecutionMemory = scanTasks(TaskIndexNames.PEAK_MEM) { t => t.peakExecutionMemory }, + memoryBytesSpilled = scanTasks(TaskIndexNames.MEM_SPILL) { t => t.memoryBytesSpilled }, + diskBytesSpilled = scanTasks(TaskIndexNames.DISK_SPILL) { t => t.diskBytesSpilled }, + inputMetrics = new v1.InputMetricDistributions( + scanTasks(TaskIndexNames.INPUT_SIZE) { t => t.inputBytesRead }, + scanTasks(TaskIndexNames.INPUT_RECORDS) { t => t.inputRecordsRead }), + outputMetrics = new v1.OutputMetricDistributions( + scanTasks(TaskIndexNames.OUTPUT_SIZE) { t => t.outputBytesWritten }, + scanTasks(TaskIndexNames.OUTPUT_RECORDS) { t => t.outputRecordsWritten }), + shuffleReadMetrics = new v1.ShuffleReadMetricDistributions( + scanTasks(TaskIndexNames.SHUFFLE_TOTAL_READS) { m => + m.shuffleLocalBytesRead + m.shuffleRemoteBytesRead + }, + scanTasks(TaskIndexNames.SHUFFLE_READ_RECORDS) { t => t.shuffleRecordsRead }, + scanTasks(TaskIndexNames.SHUFFLE_REMOTE_BLOCKS) { t => t.shuffleRemoteBlocksFetched }, + scanTasks(TaskIndexNames.SHUFFLE_LOCAL_BLOCKS) { t => t.shuffleLocalBlocksFetched }, + scanTasks(TaskIndexNames.SHUFFLE_READ_TIME) { t => t.shuffleFetchWaitTime }, + scanTasks(TaskIndexNames.SHUFFLE_REMOTE_READS) { t => t.shuffleRemoteBytesRead }, + scanTasks(TaskIndexNames.SHUFFLE_REMOTE_READS_TO_DISK) { t => + t.shuffleRemoteBytesReadToDisk + }, + scanTasks(TaskIndexNames.SHUFFLE_TOTAL_BLOCKS) { m => + m.shuffleLocalBlocksFetched + m.shuffleRemoteBlocksFetched + }), + shuffleWriteMetrics = new v1.ShuffleWriteMetricDistributions( + scanTasks(TaskIndexNames.SHUFFLE_WRITE_SIZE) { t => t.shuffleBytesWritten }, + scanTasks(TaskIndexNames.SHUFFLE_WRITE_RECORDS) { t => t.shuffleRecordsWritten }, + scanTasks(TaskIndexNames.SHUFFLE_WRITE_TIME) { t => t.shuffleWriteTime })) + + // Go through the computed quantiles and cache the values that match the caching criteria. + computedQuantiles.quantiles.zipWithIndex --- End diff -- I think it makes sense to cache them for disk store, but may be an overkill for in-memory store.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org