Github user smurakozi commented on a diff in the pull request: https://github.com/apache/spark/pull/20235#discussion_r160980529 --- Diff: mllib/src/test/scala/org/apache/spark/ml/fpm/FPGrowthSuite.scala --- @@ -34,86 +35,122 @@ class FPGrowthSuite extends SparkFunSuite with MLlibTestSparkContext with Defaul } test("FPGrowth fit and transform with different data types") { - Array(IntegerType, StringType, ShortType, LongType, ByteType).foreach { dt => - val data = dataset.withColumn("items", col("items").cast(ArrayType(dt))) - val model = new FPGrowth().setMinSupport(0.5).fit(data) - val generatedRules = model.setMinConfidence(0.5).associationRules - val expectedRules = spark.createDataFrame(Seq( - (Array("2"), Array("1"), 1.0), - (Array("1"), Array("2"), 0.75) - )).toDF("antecedent", "consequent", "confidence") - .withColumn("antecedent", col("antecedent").cast(ArrayType(dt))) - .withColumn("consequent", col("consequent").cast(ArrayType(dt))) - assert(expectedRules.sort("antecedent").rdd.collect().sameElements( - generatedRules.sort("antecedent").rdd.collect())) - - val transformed = model.transform(data) - val expectedTransformed = spark.createDataFrame(Seq( - (0, Array("1", "2"), Array.emptyIntArray), - (0, Array("1", "2"), Array.emptyIntArray), - (0, Array("1", "2"), Array.emptyIntArray), - (0, Array("1", "3"), Array(2)) - )).toDF("id", "items", "prediction") - .withColumn("items", col("items").cast(ArrayType(dt))) - .withColumn("prediction", col("prediction").cast(ArrayType(dt))) - assert(expectedTransformed.collect().toSet.equals( - transformed.collect().toSet)) + class DataTypeWithEncoder[A](val a: DataType) + (implicit val encoder: Encoder[(Int, Array[A], Array[A])]) --- End diff -- Done, thx.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org