Github user yogeshg commented on a diff in the pull request:

    https://github.com/apache/spark/pull/20904#discussion_r179639255
  
    --- Diff: python/pyspark/ml/stat.py ---
    @@ -134,6 +134,63 @@ def corr(dataset, column, method="pearson"):
             return _java2py(sc, javaCorrObj.corr(*args))
     
     
    +class KolmogorovSmirnovTest(object):
    +    """
    +    .. note:: Experimental
    +
    +    Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled 
from a
    +    continuous distribution. By comparing the largest difference between 
the empirical cumulative
    +    distribution of the sample data and the theoretical distribution we 
can provide a test for the
    +    the null hypothesis that the sample data comes from that theoretical 
distribution.
    +
    +    :param dataset:
    +      a dataset or a dataframe containing the sample of data to test.
    +    :param sampleCol:
    +      Name of sample column in dataset, of any numerical type.
    +    :param distName:
    +      a `string` name for a theoretical distribution, currently only 
support "norm".
    +    :param params:
    +      a list of `Double` values specifying the parameters to be used for 
the theoretical
    +      distribution
    +    :return:
    +      A dataframe that contains the Kolmogorov-Smirnov test result for the 
input sampled data.
    +      This DataFrame will contain a single Row with the following fields:
    +      - `pValue: Double`
    +      - `statistic: Double`
    +
    +    >>> from pyspark.ml.stat import KolmogorovSmirnovTest
    +    >>> dataset = [[-1.0], [0.0], [1.0]]
    +    >>> dataset = spark.createDataFrame(dataset, ['sample'])
    +    >>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm', 
0.0, 1.0).collect()[0]
    +    >>> round(ksResult.pValue, 3)
    +    1.0
    +    >>> round(ksResult.statistic, 3)
    +    0.175
    +    >>> dataset = [[2.0], [3.0], [4.0]]
    +    >>> dataset = spark.createDataFrame(dataset, ['sample'])
    +    >>> ksResult = KolmogorovSmirnovTest.test(dataset, 'sample', 'norm', 
3.0, 1.0).collect()[0]
    +    >>> round(ksResult.pValue, 3)
    +    1.0
    +    >>> round(ksResult.statistic, 3)
    +    0.175
    +
    +    .. versionadded:: 2.4.0
    +
    +    """
    +    @staticmethod
    +    @since("2.4.0")
    +    def test(dataset, sampleCol, distName, *params):
    +        """
    +        Perform a Kolmogorov-Smirnov test using dataset.
    +        """
    +        sc = SparkContext._active_spark_context
    +        javaTestObj = _jvm().org.apache.spark.ml.stat.KolmogorovSmirnovTest
    +        dataset = _py2java(sc, dataset)
    +        params = [float(param) for param in params]
    +        return _java2py(sc, javaTestObj.test(dataset, sampleCol, distName,
    --- End diff --
    
    thanks for checking this out! current usage sounds fair!


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to