Github user tdas commented on a diff in the pull request:

    https://github.com/apache/spark/pull/21200#discussion_r185356454
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/continuous/ContinuousDataSourceRDD.scala
 ---
    @@ -0,0 +1,160 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.streaming.continuous
    +
    +import java.util.concurrent.TimeUnit
    +import javax.annotation.concurrent.GuardedBy
    +
    +import scala.collection.mutable
    +
    +import org.apache.spark._
    +import org.apache.spark.internal.Logging
    +import org.apache.spark.rdd.RDD
    +import org.apache.spark.sql.{Row, SQLContext}
    +import org.apache.spark.sql.catalyst.expressions.UnsafeRow
    +import 
org.apache.spark.sql.execution.datasources.v2.{DataSourceRDDPartition, 
RowToUnsafeDataReader}
    +import org.apache.spark.sql.sources.v2.reader._
    +import 
org.apache.spark.sql.sources.v2.reader.streaming.{ContinuousDataReader, 
PartitionOffset}
    +import org.apache.spark.util.ThreadUtils
    +
    +/**
    + * The bottom-most RDD of a continuous processing read task. Wraps a 
[[ContinuousQueuedDataReader]]
    + * to read from the remote source, and polls that queue for incoming rows.
    + *
    + * Note that continuous processing calls compute() multiple times, and the 
same
    + * [[ContinuousQueuedDataReader]] instance will/must be shared between 
each call for the same split.
    + */
    +class ContinuousDataSourceRDD(
    +    sc: SparkContext,
    +    sqlContext: SQLContext,
    +    @transient private val readerFactories: 
Seq[DataReaderFactory[UnsafeRow]])
    +  extends RDD[UnsafeRow](sc, Nil) {
    +
    +  private val dataQueueSize = 
sqlContext.conf.continuousStreamingExecutorQueueSize
    +  private val epochPollIntervalMs = 
sqlContext.conf.continuousStreamingExecutorPollIntervalMs
    +
    +  // When computing the same partition multiple times, we need to use the 
same data reader to
    +  // do so for continuity in offsets.
    +  @GuardedBy("dataReaders")
    +  private val dataReaders: mutable.Map[Partition, 
ContinuousQueuedDataReader] =
    +    mutable.Map[Partition, ContinuousQueuedDataReader]()
    +
    +  override protected def getPartitions: Array[Partition] = {
    +    readerFactories.zipWithIndex.map {
    +      case (readerFactory, index) => new DataSourceRDDPartition(index, 
readerFactory)
    +    }.toArray
    +  }
    +
    +  override def compute(split: Partition, context: TaskContext): 
Iterator[UnsafeRow] = {
    +    // If attempt number isn't 0, this is a task retry, which we don't 
support.
    +    if (context.attemptNumber() != 0) {
    +      throw new ContinuousTaskRetryException()
    +    }
    +
    +    val readerForPartition = dataReaders.synchronized {
    +      if (!dataReaders.contains(split)) {
    +        dataReaders.put(
    +          split,
    +          new ContinuousQueuedDataReader(split, context, dataQueueSize, 
epochPollIntervalMs))
    +      }
    +
    +      dataReaders(split)
    +    }
    +
    +    val coordinatorId = 
context.getLocalProperty(ContinuousExecution.EPOCH_COORDINATOR_ID_KEY)
    +    val epochEndpoint = EpochCoordinatorRef.get(coordinatorId, 
SparkEnv.get)
    +    new Iterator[UnsafeRow] {
    +      private val POLL_TIMEOUT_MS = 1000
    +
    +      private var currentEntry: (UnsafeRow, PartitionOffset) = _
    +
    +      override def hasNext(): Boolean = {
    +        while (currentEntry == null) {
    +          if (context.isInterrupted() || context.isCompleted()) {
    +            // Force the epoch to end here. The writer will notice the 
context is interrupted
    +            // or completed and not start a new one. This makes it 
possible to achieve clean
    +            // shutdown of the streaming query.
    +            // TODO: The obvious generalization of this logic to multiple 
stages won't work. It's
    --- End diff --
    
    It's hard to make sense what this means. What is "bottom of a task"??


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to