Github user mccheah commented on a diff in the pull request: https://github.com/apache/spark/pull/21366#discussion_r190365981 --- Diff: resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/ExecutorPodsEventHandler.scala --- @@ -0,0 +1,229 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.scheduler.cluster.k8s + +import java.util.concurrent.{Future, LinkedBlockingQueue, ScheduledExecutorService, TimeUnit} +import java.util.concurrent.atomic.{AtomicInteger, AtomicLong} + +import io.fabric8.kubernetes.api.model.{Pod, PodBuilder} +import io.fabric8.kubernetes.client.KubernetesClient +import scala.collection.JavaConverters._ +import scala.collection.mutable + +import org.apache.spark.{SparkConf, SparkException} +import org.apache.spark.deploy.k8s.Config._ +import org.apache.spark.deploy.k8s.Constants._ +import org.apache.spark.deploy.k8s.KubernetesConf +import org.apache.spark.internal.Logging +import org.apache.spark.scheduler.ExecutorExited +import org.apache.spark.util.Utils + +private[spark] class ExecutorPodsEventHandler( + conf: SparkConf, + executorBuilder: KubernetesExecutorBuilder, + kubernetesClient: KubernetesClient, + eventProcessorExecutor: ScheduledExecutorService) extends Logging { + + import ExecutorPodsEventHandler._ + + private val EXECUTOR_ID_COUNTER = new AtomicLong(0L) + + private val totalExpectedExecutors = new AtomicInteger(0) + + private val eventQueue = new LinkedBlockingQueue[Seq[Pod]]() + + private val podAllocationSize = conf.get(KUBERNETES_ALLOCATION_BATCH_SIZE) + + private val podAllocationDelay = conf.get(KUBERNETES_ALLOCATION_BATCH_DELAY) + + private val kubernetesDriverPodName = conf + .get(KUBERNETES_DRIVER_POD_NAME) + .getOrElse(throw new SparkException("Must specify the driver pod name")) + + private val driverPod = kubernetesClient.pods() + .withName(kubernetesDriverPodName) + .get() + + // Use sets of ids instead of counters to be able to handle duplicate events. + + // Executor IDs that have been requested from Kubernetes but are not running yet. + private val pendingExecutors = mutable.Set.empty[Long] + + // We could use CoarseGrainedSchedulerBackend#totalRegisteredExecutors here for tallying the + // executors that are running. But, here we choose instead to maintain all state within this + // class from the persecptive of the k8s API. Therefore whether or not this scheduler loop + // believes an executor is running is dictated by the K8s API rather than Spark's RPC events. + // We may need to consider where these perspectives may differ and which perspective should + // take precedence. + private val runningExecutors = mutable.Set.empty[Long] + + private var eventProcessorFuture: Future[_] = _ + + def start(applicationId: String, schedulerBackend: KubernetesClusterSchedulerBackend): Unit = { + require(eventProcessorFuture == null, "Cannot start event processing twice.") + logInfo(s"Starting Kubernetes executor pods event handler for application with" + + s" id $applicationId.") + val eventProcessor = new Runnable { + override def run(): Unit = { + Utils.tryLogNonFatalError { + processEvents(applicationId, schedulerBackend) + } + } + } + eventProcessorFuture = eventProcessorExecutor.scheduleWithFixedDelay( + eventProcessor, 0L, podAllocationDelay, TimeUnit.MILLISECONDS) + } + + def stop(): Unit = { + if (eventProcessorFuture != null) { + eventProcessorFuture.cancel(true) + eventProcessorFuture = null + } + } + + private def processEvents( + applicationId: String, schedulerBackend: KubernetesClusterSchedulerBackend) { + val currentEvents = new java.util.ArrayList[Seq[Pod]](eventQueue.size()) + eventQueue.drainTo(currentEvents) + currentEvents.asScala.flatten.foreach { updatedPod => + val execId = updatedPod.getMetadata.getLabels.get(SPARK_EXECUTOR_ID_LABEL).toLong + val podPhase = updatedPod.getStatus.getPhase.toLowerCase + if (isDeleted(updatedPod)) { + removeExecutorFromSpark(schedulerBackend, updatedPod, execId) + } else { + updatedPod.getStatus.getPhase.toLowerCase match { + case "running" => + // If clause is for resililence to out of order operations - executor must be + // pending and first reach running. Without this check you may e.g. process a + // deletion event followed by some arbitrary modification event - we want the + // deletion event to "stick". + if (pendingExecutors.contains(execId)) { + pendingExecutors.remove(execId) + runningExecutors.add(execId) + } + // TODO (SPARK-24135) - handle more classes of errors + case "error" | "failed" | "succeeded" => + // If deletion failed on a previous try, we can try again if resync informs us the pod + // is still around. + // Delete as best attempt - duplicate deletes will throw an exception but the end state + // of getting rid of the pod is what matters. + if (!isDeleted(updatedPod)) { + Utils.tryLogNonFatalError { + kubernetesClient + .pods() + .withName(updatedPod.getMetadata.getName) + .delete() + } + } + removeExecutorFromSpark(schedulerBackend, updatedPod, execId) + } + } + } + + val currentRunningExecutors = runningExecutors.size + val currentTotalExpectedExecutors = totalExpectedExecutors.get + if (pendingExecutors.isEmpty && currentRunningExecutors < currentTotalExpectedExecutors) { + val numExecutorsToAllocate = math.min( + currentTotalExpectedExecutors - currentRunningExecutors, podAllocationSize) + logInfo(s"Going to request $numExecutorsToAllocate executors from Kubernetes.") + val newExecutorIds = mutable.Buffer.empty[Long] + val podsToAllocate = mutable.Buffer.empty[Pod] + for ( _ <- 0 until numExecutorsToAllocate) { + val newExecutorId = EXECUTOR_ID_COUNTER.incrementAndGet() + val executorConf = KubernetesConf.createExecutorConf( + conf, + newExecutorId.toString, + applicationId, + driverPod) + val executorPod = executorBuilder.buildFromFeatures(executorConf) + val podWithAttachedContainer = new PodBuilder(executorPod.pod) + .editOrNewSpec() + .addToContainers(executorPod.container) + .endSpec() + .build() + kubernetesClient.pods().create(podWithAttachedContainer) + pendingExecutors += newExecutorId + } + } else if (currentRunningExecutors == currentTotalExpectedExecutors) { + logDebug("Current number of running executors is equal to the number of requested" + + " executors. Not scaling up further.") + } else if (pendingExecutors.nonEmpty) { + logInfo(s"Still waiting for ${pendingExecutors.size} executors to begin running before" + + s" requesting for more executors.") + } + } + + def sendUpdatedPodMetadata(updatedPod: Pod): Unit = { + eventQueue.add(Seq(updatedPod)) + } + + def sendUpdatedPodMetadata(updatedPods: Iterable[Pod]): Unit = { + eventQueue.add(updatedPods.toSeq) --- End diff -- Thought about this, I prefer the idea of the polling executor being able to add all of its pods that it saw in a round as an atomic operation. But as long as we're handling out of order events properly perhaps the difference is negligible.
--- --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org