Github user HeartSaVioR commented on a diff in the pull request:

    https://github.com/apache/spark/pull/22138#discussion_r214913221
  
    --- Diff: 
external/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/InternalKafkaConsumerPool.scala
 ---
    @@ -0,0 +1,241 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.kafka010
    +
    +import java.{util => ju}
    +import java.util.concurrent.ConcurrentHashMap
    +
    +import org.apache.commons.pool2.{BaseKeyedPooledObjectFactory, 
PooledObject, SwallowedExceptionListener}
    +import org.apache.commons.pool2.impl.{DefaultEvictionPolicy, 
DefaultPooledObject, GenericKeyedObjectPool, GenericKeyedObjectPoolConfig}
    +
    +import org.apache.spark.SparkEnv
    +import org.apache.spark.internal.Logging
    +import org.apache.spark.sql.kafka010.InternalKafkaConsumerPool._
    +import org.apache.spark.sql.kafka010.KafkaDataConsumer.CacheKey
    +
    +/**
    + * Provides object pool for [[InternalKafkaConsumer]] which is grouped by 
[[CacheKey]].
    + *
    + * This class leverages [[GenericKeyedObjectPool]] internally, hence 
providing methods based on
    + * the class, and same contract applies: after using the borrowed object, 
you must either call
    + * returnObject() if the object is healthy to return to pool, or 
invalidateObject() if the object
    + * should be destroyed.
    + *
    + * The soft capacity of pool is determined by 
"spark.sql.kafkaConsumerCache.capacity" config value,
    + * and the pool will have reasonable default value if the value is not 
provided.
    + * (The instance will do its best effort to respect soft capacity but it 
can exceed when there's
    + * a borrowing request and there's neither free space nor idle object to 
clear.)
    + *
    + * This class guarantees that no caller will get pooled object once the 
object is borrowed and
    + * not yet returned, hence provide thread-safety usage of non-thread-safe 
[[InternalKafkaConsumer]]
    + * unless caller shares the object to multiple threads.
    + */
    +private[kafka010] class InternalKafkaConsumerPool(
    +    objectFactory: ObjectFactory,
    +    poolConfig: PoolConfig) {
    +
    +  // the class is intended to have only soft capacity
    +  assert(poolConfig.getMaxTotal < 0)
    +
    +  private lazy val pool = {
    +    val internalPool = new GenericKeyedObjectPool[CacheKey, 
InternalKafkaConsumer](
    +      objectFactory, poolConfig)
    +    
internalPool.setSwallowedExceptionListener(CustomSwallowedExceptionListener)
    +    internalPool
    +  }
    +
    +  /**
    +   * Borrows [[InternalKafkaConsumer]] object from the pool. If there's no 
idle object for the key,
    +   * the pool will create the [[InternalKafkaConsumer]] object.
    +   *
    +   * If the pool doesn't have idle object for the key and also exceeds the 
soft capacity,
    +   * pool will try to clear some of idle objects.
    +   *
    +   * Borrowed object must be returned by either calling returnObject or 
invalidateObject, otherwise
    +   * the object will be kept in pool as active object.
    +   */
    +  def borrowObject(key: CacheKey, kafkaParams: ju.Map[String, Object]): 
InternalKafkaConsumer = {
    +    updateKafkaParamForKey(key, kafkaParams)
    +
    +    if (getTotal == poolConfig.getSoftMaxTotal()) {
    +      pool.clearOldest()
    +    }
    +
    +    pool.borrowObject(key)
    +  }
    +
    +  /** Returns borrowed object to the pool. */
    +  def returnObject(consumer: InternalKafkaConsumer): Unit = {
    +    pool.returnObject(extractCacheKey(consumer), consumer)
    +  }
    +
    +  /** Invalidates (destroy) borrowed object to the pool. */
    +  def invalidateObject(consumer: InternalKafkaConsumer): Unit = {
    +    pool.invalidateObject(extractCacheKey(consumer), consumer)
    +  }
    +
    +  /** Invalidates all idle consumers for the key */
    +  def invalidateKey(key: CacheKey): Unit = {
    +    pool.clear(key)
    +  }
    +
    +  /**
    +   * Closes the keyed object pool. Once the pool is closed,
    +   * borrowObject will fail with [[IllegalStateException]], but 
returnObject and invalidateObject
    +   * will continue to work, with returned objects destroyed on return.
    +   *
    +   * Also destroys idle instances in the pool.
    +   */
    +  def close(): Unit = {
    +    pool.close()
    +  }
    +
    +  def getNumIdle: Int = pool.getNumIdle
    +
    +  def getNumIdle(key: CacheKey): Int = pool.getNumIdle(key)
    +
    +  def getNumActive: Int = pool.getNumActive
    +
    +  def getNumActive(key: CacheKey): Int = pool.getNumActive(key)
    +
    +  def getTotal: Int = getNumIdle + getNumActive
    +
    +  def getTotal(key: CacheKey): Int = getNumIdle(key) + getNumActive(key)
    +
    +  private def updateKafkaParamForKey(key: CacheKey, kafkaParams: 
ju.Map[String, Object]): Unit = {
    +    // We can assume that kafkaParam should not be different for same 
cache key,
    +    // otherwise we can't reuse the cached object and cache key should 
contain kafkaParam.
    +    // So it should be safe to put the key/value pair only when the key 
doesn't exist.
    +    objectFactory.keyToKafkaParams.putIfAbsent(key, kafkaParams)
    +  }
    +
    +  private def extractCacheKey(consumer: InternalKafkaConsumer): CacheKey = 
{
    +    new CacheKey(consumer.topicPartition, consumer.kafkaParams)
    +  }
    +}
    +
    +private[kafka010] object InternalKafkaConsumerPool {
    +
    +  /**
    +   * Builds the pool for [[InternalKafkaConsumer]]. The pool instance is 
created per each call.
    +   */
    +  def build: InternalKafkaConsumerPool = {
    +    val objFactory = new ObjectFactory
    +    val poolConfig = new PoolConfig
    +    new InternalKafkaConsumerPool(objFactory, poolConfig)
    +  }
    +
    +  case class PooledObjectInvalidated(key: CacheKey, 
lastInvalidatedTimestamp: Long,
    +                                     lastBorrowedTime: Long) extends 
RuntimeException
    +
    +  object CustomSwallowedExceptionListener extends 
SwallowedExceptionListener with Logging {
    +    override def onSwallowException(e: Exception): Unit = {
    +      logError(s"Error closing Kafka consumer", e)
    +    }
    +  }
    +
    +  class PoolConfig extends 
GenericKeyedObjectPoolConfig[InternalKafkaConsumer] {
    +    private var softMaxTotal = Int.MaxValue
    +
    +    def getSoftMaxTotal(): Int = softMaxTotal
    +
    +    init()
    +
    +    def init(): Unit = {
    +      import PoolConfig._
    +
    +      val conf = SparkEnv.get.conf
    +
    +      softMaxTotal = conf.getInt(CONFIG_NAME_CAPACITY, 
DEFAULT_VALUE_CAPACITY)
    +
    +      val jmxEnabled = conf.getBoolean(CONFIG_NAME_JMX_ENABLED,
    +        defaultValue = DEFAULT_VALUE_JMX_ENABLED)
    +      val minEvictableIdleTimeMillis = 
conf.getLong(CONFIG_NAME_MIN_EVICTABLE_IDLE_TIME_MILLIS,
    +        DEFAULT_VALUE_MIN_EVICTABLE_IDLE_TIME_MILLIS)
    +      val evictorThreadRunIntervalMillis = conf.getLong(
    +        CONFIG_NAME_EVICTOR_THREAD_RUN_INTERVAL_MILLIS,
    +        DEFAULT_VALUE_EVICTOR_THREAD_RUN_INTERVAL_MILLIS)
    +
    +      // NOTE: Below lines define the behavior, so do not modify unless 
you know what you are
    +      // doing, and update the class doc accordingly if necessary when you 
modify.
    +
    +      // 1. Set min idle objects per key to 0 to avoid creating 
unnecessary object.
    +      // 2. Set max idle objects per key to 3 but set total objects per 
key to infinite
    +      // which ensures borrowing per key is not restricted.
    +      // 3. Set max total objects to infinite which ensures all objects 
are managed in this pool.
    +      setMinIdlePerKey(0)
    +      setMaxIdlePerKey(3)
    +      setMaxTotalPerKey(-1)
    +      setMaxTotal(-1)
    +
    +      // Set minimum evictable idle time which will be referred from 
evictor thread
    +      setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis)
    +      setSoftMinEvictableIdleTimeMillis(-1)
    +
    +      // evictor thread will run test with ten idle objects
    +      setTimeBetweenEvictionRunsMillis(evictorThreadRunIntervalMillis)
    +      setNumTestsPerEvictionRun(10)
    +      setEvictionPolicy(new DefaultEvictionPolicy[InternalKafkaConsumer]())
    +
    +      // Immediately fail on exhausted pool while borrowing
    +      setBlockWhenExhausted(false)
    +
    +      setJmxEnabled(jmxEnabled)
    +      setJmxNamePrefix("kafka010-cached-simple-kafka-consumer-pool")
    +    }
    +  }
    +
    +  object PoolConfig {
    +    val CONFIG_NAME_PREFIX = "spark.sql.kafkaConsumerCache."
    +    val CONFIG_NAME_CAPACITY = CONFIG_NAME_PREFIX + "capacity"
    +    val CONFIG_NAME_JMX_ENABLED = CONFIG_NAME_PREFIX + "jmx.enable"
    +    val CONFIG_NAME_MIN_EVICTABLE_IDLE_TIME_MILLIS = CONFIG_NAME_PREFIX +
    +      "minEvictableIdleTimeMillis"
    +    val CONFIG_NAME_EVICTOR_THREAD_RUN_INTERVAL_MILLIS = 
CONFIG_NAME_PREFIX +
    +      "evictorThreadRunIntervalMillis"
    +
    +    val DEFAULT_VALUE_CAPACITY = 64
    +    val DEFAULT_VALUE_JMX_ENABLED = false
    +    val DEFAULT_VALUE_MIN_EVICTABLE_IDLE_TIME_MILLIS = 5 * 60 * 1000 // 5 
minutes
    +    val DEFAULT_VALUE_EVICTOR_THREAD_RUN_INTERVAL_MILLIS = 3 * 60 * 1000 
// 3 minutes
    +  }
    +
    +  class ObjectFactory extends BaseKeyedPooledObjectFactory[CacheKey, 
InternalKafkaConsumer]
    +    with Logging {
    +
    +    val keyToKafkaParams: ConcurrentHashMap[CacheKey, ju.Map[String, 
Object]] =
    +      new ConcurrentHashMap[CacheKey, ju.Map[String, Object]]()
    +
    +    override def create(key: CacheKey): InternalKafkaConsumer = {
    +      val kafkaParams = keyToKafkaParams.get(key)
    +      if (kafkaParams == null) {
    --- End diff --
    
    No strong opinion on this. Looks like Spark allows using `null` and doesn't 
enforce guarding with `Option` so I just leveraged what `ConcurrentHashMap.get` 
provides. Did you intend `.getOrElse(throw ...)`?


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to