Github user icexelloss commented on a diff in the pull request:

    https://github.com/apache/spark/pull/22305#discussion_r234790403
  
    --- Diff: python/pyspark/sql/tests.py ---
    @@ -7064,12 +7098,104 @@ def test_invalid_args(self):
                     foo_udf = pandas_udf(lambda x: x, 'v double', 
PandasUDFType.GROUPED_MAP)
                     df.withColumn('v2', foo_udf(df['v']).over(w))
     
    -        with QuietTest(self.sc):
    -            with self.assertRaisesRegexp(
    -                    AnalysisException,
    -                    '.*Only unbounded window frame is supported.*'):
    -                df.withColumn('mean_v', mean_udf(df['v']).over(ow))
    +    def test_bounded_simple(self):
    +        from pyspark.sql.functions import mean, max, min, count
    +
    +        df = self.data
    +        w1 = self.sliding_row_window
    +        w2 = self.shrinking_range_window
    +
    +        plus_one = self.python_plus_one
    +        count_udf = self.pandas_agg_count_udf
    +        mean_udf = self.pandas_agg_mean_udf
    +        max_udf = self.pandas_agg_max_udf
    +        min_udf = self.pandas_agg_min_udf
    +
    +        result1 = df.withColumn('mean_v', 
mean_udf(plus_one(df['v'])).over(w1))\
    +            .withColumn('count_v', count_udf(df['v']).over(w2)) \
    +            .withColumn('max_v',  max_udf(df['v']).over(w2)) \
    +            .withColumn('min_v', min_udf(df['v']).over(w1)) \
    +
    +        expected1 = df.withColumn('mean_v', 
mean(plus_one(df['v'])).over(w1))\
    +            .withColumn('count_v', count(df['v']).over(w2)) \
    +            .withColumn('max_v', max(df['v']).over(w2)) \
    +            .withColumn('min_v', min(df['v']).over(w1)) \
    +
    +        self.assertPandasEqual(expected1.toPandas(), result1.toPandas())
    +
    +    def test_growing_window(self):
    +        from pyspark.sql.functions import mean
    +
    +        df = self.data
    +        w1 = self.growing_row_window
    +        w2 = self.growing_range_window
     
    +        mean_udf = self.pandas_agg_mean_udf
    +
    +        result1 = df.withColumn('m1', mean_udf(df['v']).over(w1)) \
    +            .withColumn('m2', mean_udf(df['v']).over(w2))
    +
    +        expected1 = df.withColumn('m1', mean(df['v']).over(w1)) \
    +            .withColumn('m2', mean(df['v']).over(w2))
    +
    +        self.assertPandasEqual(expected1.toPandas(), result1.toPandas())
    +
    +    def test_sliding_window(self):
    +        from pyspark.sql.functions import mean
    +
    +        df = self.data
    +        w1 = self.sliding_row_window
    +        w2 = self.sliding_range_window
    +
    +        mean_udf = self.pandas_agg_mean_udf
    +
    +        result1 = df.withColumn('m1', mean_udf(df['v']).over(w1)) \
    +            .withColumn('m2', mean_udf(df['v']).over(w2))
    +
    +        expected1 = df.withColumn('m1', mean(df['v']).over(w1)) \
    +            .withColumn('m2', mean(df['v']).over(w2))
    +
    +        result1.show()
    +        expected1.show()
    --- End diff --
    
    Thanks! Removed


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to