maropu commented on issue #25137: [SPARK-28348][SQL] Decimal precision 
promotion for binary arithmetic with casted decimal type
URL: https://github.com/apache/spark/pull/25137#issuecomment-511744139
 
 
   Which one does follow the SQL standard? IIUC the current spark behaviour 
depends on the Hive one. On the other hand, PostgreSQL officially says [they 
follows the standard of "Implicit casting among the numeric data 
types](https://www.postgresql.org/docs/11/features-sql-standard.html) and the 
result is;
   ```
   
   postgres=# select cast(c1 * cast(-34338492.215397047 as decimal(38, 18)) as 
decimal(38, 18)) as c1 from spark_28348;
                    c1                  
   -------------------------------------
    1179132047626883.596862135856320209
   (1 row)
   
   postgres=# explain verbose select cast(c1 * cast(-34338492.215397047 as 
decimal(38, 18)) as decimal(38, 18)) as c1 from spark_28348;
                                       QUERY PLAN                               
      
   
-----------------------------------------------------------------------------------
    Seq Scan on public.spark_28348  (cost=0.00..31.00 rows=1400 width=30)
      Output: ((c1 * 
'-34338492.215397047000000000'::numeric(38,18)))::numeric(38,18)
   (2 rows)
   ```
   
   mysql has the same result;
   ```
   mysql> select cast(c1 * cast(-34338492.215397047 as decimal(38, 18)) as 
decimal(38, 18)) as c1 from spark_28348;
   +-------------------------------------+
   | c1                                  |
   +-------------------------------------+
   | 1179132047626883.596862135856320209 |
   +-------------------------------------+
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to