On 2 Nov., 12:10, Wilfried_Huss <[EMAIL PROTECTED]> wrote:
> Hi,
>
> I have written some code for the Maxima interface.
> You can find the patches at:
> http://www.math.tugraz.at/~huss/sage
>
> calculus1.patch implements the conversion from Maxima
> matrices to Sage matrices.
This is now: #4431
> calculus2.patch adds symbolic gamma and factorial functions.
> (The factorial is named fact() so it doesn't clash with the
> factorial in sage.rings.arith)
This is now: #4432
> Finally calculus3.patch renames the symbolic factorial to factorial(),
> and changes all imports of sage.rings.arith.factorial to
> sage.calculus.calculus.factorial. I had to keep a renamed version
> of the factorial function in sage.rings.arith to avoid circular
> imports at startup.
This is now: #4433
> The patches are against 3.2-alpha1, after applying all 3 patches
> all tests passed.
>
> Here is a sample session with the new functionality:
>
> sage: var('x,y')
> sage: v = maxima('v: vandermonde_matrix([x, y, 1/2])')
> sage: v
> matrix([1,x,x^2],[1,y,y^2],[1,1/2,1/4])
> sage: type(v)
> <class 'sage.interfaces.maxima.MaximaElement'>
> sage: v.sage()
>
> [ 1 x x^2]
> [ 1 y y^2]
> [ 1 1/2 1/4]
> sage: mlist = maxima('[v, sin(x), 1, v.v]').sage()
> sage: mlist
>
> [[ 1 x x^2]
> [ 1 y y^2]
> [ 1 1/2 1/4],
> sin(x),
> 1,
> [ x^2 + x + 1 x*y + x^2/2 + x x*y^2 + 5*x^2/4]
> [ y^2 + y + 1 3*y^2/2 + x y^3 + y^2/4 + x^2]
> [ 7/4 y/2 + x + 1/8 y^2/2 + x^2 + 1/16]]
> sage: [parent(i) for i in mlist]
>
> [Full MatrixSpace of 3 by 3 dense matrices over Symbolic Ring,
> Symbolic Ring,
> Symbolic Ring,
> Full MatrixSpace of 3 by 3 dense matrices over Symbolic Ring]
>
> sage: gamma(x/2)(x=5)
> 3*sqrt(pi)/4
>
> sage: f = factorial(x + factorial(y))
> sage: maxima(f).sage()
> factorial(factorial(y) + x)
>
> sage: f(y=x)(x=3)
> 362880
>
> I hope it is useful.
>
> Greetings,
> Wilfried Huss
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---