This is an ID10T error. The following assertion from the bug report is
false:

> The prime 83 splits as PQ, where
> P, Q have N(P)=83^5.

sage: [P.residue_class_degree() for P in M.primes_above(83)]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

So the output is correct.

David


On Aug 17, 10:41 am, Harald Schilly <[email protected]> wrote:
> From the notebook's report a problem bugtracker:
>
> Problem Computing Artin Symbol
>
> ------------ problem description
>
> The command artin_symbol(P) doesn't compute the Artin Symbol in a
> specific case.  Below is the code.    There is an Artin symbol, but the 
> command
> returns an empty result.   For other primes like 3, 7, there is no
> problem.
>
> sage: M.<g>=NumberField(x^10 + 2*x^9 + 11*x^8 - 14*x^7 + 13*x^6 -
> 160*x^5 + 575*x^4 + 1288*x^3 + 4890*x^2 + 4764*x +
> 4483,'h').galois_closure()
> sage: print(M);
> sage: G=M.galois_group()
> sage: print(M.discriminant().factor())
> sage: [G.artin_symbol(P) for P in M.primes_above(83)]
>
> Number Field in g with defining polynomial x^10 + 2*x^9 + 11*x^8 -
> 14*x^7 + 13*x^6 - 160*x^5 + 575*x^4 + 1288*x^3 + 4890*x^2 + 4764*x +
> 4483
>
> -1 * 47^5
>
> [(), (), (), (), (), (), (), (), (), ()]
>
> --------- expected output
>
> Should get an output like
>
> [(1,3,9,5,8)(2,6,4,7,10), (1,8,5,9,3)(2,10,7,4,6)]
>
> which is the Artin symbol for 3
>
> ------------ note
>
> I can confirm this in 4.1.1
>
> H
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send an email to [email protected]
To unsubscribe from this group, send an email to 
[email protected]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to