William, Volker,

Thanks for the replies.  Kernels for the rationals go to IML and for
number fields they go to PARI.  Does either of those rely on linbox?

Here's the requested output - three different number fields are
evident.  Thanks for the help.

Rob

** Stock 4.6.2.alpha3, second output repeats thereafter

sage: set_random_seed(0)
sage: ModularSymbols_clear_cache()
sage: M = ModularSymbols(62,2,sign=-1)
sage: S = M.cuspidal_submodule().new_submodule()
sage: [A.system_of_eigenvalues(3) for A in S.decomposition()]
[[1, 1, 0], [1, -1, -alpha - 1]]
sage: [A.system_of_eigenvalues(3)[0].parent() for A in
S.decomposition()]
[Rational Field, Number Field in alpha with defining polynomial x^2 +
4*x + 1]

sage: set_random_seed(0)
sage: ModularSymbols_clear_cache()
sage: M = ModularSymbols(62,2,sign=-1)
sage: S = M.cuspidal_submodule().new_submodule()
sage: [A.system_of_eigenvalues(3) for A in S.decomposition()]
[[1, 1, 0], [1, -1, 1/2*alpha + 1/2]]
sage: [A.system_of_eigenvalues(3)[0].parent() for A in
S.decomposition()]
[Rational Field, Number Field in alpha with defining polynomial x^2 -
2*x - 11]


** 4.6.2.alpha3 + patches at #10746, identical output each run

sage: set_random_seed(0)
sage: ModularSymbols_clear_cache()
sage: M = ModularSymbols(62,2,sign=-1)
sage: S = M.cuspidal_submodule().new_submodule()
sage: [A.system_of_eigenvalues(3) for A in S.decomposition()]
[[1, 1, 0], [1, -1, -1/2*alpha - 1/2]]
sage: [A.system_of_eigenvalues(3)[0].parent() for A in
S.decomposition()]
[Rational Field, Number Field in alpha with defining polynomial x^2 +
6*x - 3]

-- 
To post to this group, send an email to sage-devel@googlegroups.com
To unsubscribe from this group, send an email to 
sage-devel+unsubscr...@googlegroups.com
For more options, visit this group at http://groups.google.com/group/sage-devel
URL: http://www.sagemath.org

Reply via email to