In Debian testing running on Ryzen 9 + 64 GB RAM, building 10.9.beta1 from
a fresh clone of the git repository, with /configure --enable-dot2tex
--enable-mtools --enable-fricas --enable-giac --with-system-fricas=no
--with-system-giac=no, ptestlong gives 6 permanent failures :
---------------------------------------------------------------------
src/bin/sage -t --long --warn-long 30.0
--random-seed=103198921344494641633707050883315226248
src/sage/graphs/generic_graph.py # SystemExit in doctesting framework
src/bin/sage -t --long --warn-long 30.0
--random-seed=103198921344494641633707050883315226248
src/sage/graphs/graph_latex.py # SystemExit in doctesting framework
src/bin/sage -t --long --warn-long 30.0
--random-seed=103198921344494641633707050883315226248
src/sage/misc/latex_standalone.py # SystemExit in doctesting framework
src/bin/sage -t --long --warn-long 30.0
--random-seed=103198921344494641633707050883315226248
src/sage/rings/real_mpfr.pyx # 1 doctest failed src/bin/sage -t --long
--warn-long 30.0 --random-seed=103198921344494641633707050883315226248
src/sage/rings/polynomial/multi_polynomial_ideal.py # 2 doctests failed
src/bin/sage -t --long --warn-long 30.0
--random-seed=103198921344494641633707050883315226248
src/sage/rings/polynomial/msolve.py # 14 doctests failed
----------------------------------------------------------------------
The first three are attrubutable to a (new) failure of dot2tex, which, in
these three cases, end up with :
3.13/site-packages/dot2tex/dot2tex.py", line 784, in convert sys.exit(1)
~~~~~~~~^^^ SystemExit: 1
The other three have been already reported several times. It is noteworthy
that the multi_polynomial_ideal.py, which failed to recognize the
mathematical identity of two string expressions of the same solution was
supposed to be fixed ; it is not, but I get different failures :
File "src/sage/rings/polynomial/multi_polynomial_ideal.py", line 2618, in
sage.rings.polynomial.multi_polynomial_ideal.?.variety Failed example:
sorted(I.variety(algorithm='msolve', # optional - msolve, needs
sage.rings.finite_rings proof=False), key=lambda d: str(sorted(d.items()))
Exception raised: Traceback (most recent call last): File
"/usr/local/sage-10.9.beta1/src/sage/doctest/forker.py", line 734, in _run
self.compile_and_execute(example, compiler, test.globs)
~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File
"/usr/local/sage-10.9.beta1/src/sage/doctest/forker.py", line 1156, in
compile_and_execute compiled = compiler(example) File
"/usr/local/sage-10.9.beta1/src/sage/doctest/forker.py", line 700, in
compiler code = compile(example.source, filename, "single", compileflags,
1) File "<doctest
sage.rings.polynomial.multi_polynomial_ideal.?.variety[32]>", line 1
sorted(I.variety(algorithm='msolve', # optional - msolve, needs
sage.rings.finite_rings ^ SyntaxError: '(' was never closed
********************************************************************** File
"src/sage/rings/polynomial/multi_polynomial_ideal.py", line 2631, in
sage.rings.polynomial.multi_polynomial_ideal.?.variety Failed example:
I.variety(algorithm='msolve', proof=False) # optional - msolve Expected:
Traceback (most recent call last): ... NotImplementedError: characteristic
3 too small Got: <BLANKLINE> Traceback (most recent call last): File
"/usr/local/sage-10.9.beta1/src/sage/rings/polynomial/msolve.py", line 249,
in variety data = sage_eval(msolve_out[:-2]) File
"/usr/local/sage-10.9.beta1/src/sage/misc/sage_eval.py", line 187, in
sage_eval return eval(source, sage.all.__dict__, locals) File "<string>",
line 0 <BLANKLINE> SyntaxError: invalid syntax <BLANKLINE> During handling
of the above exception, another exception occurred: <BLANKLINE> Traceback
(most recent call last): File
"/usr/local/sage-10.9.beta1/src/sage/doctest/forker.py", line 734, in _run
self.compile_and_execute(example, compiler, test.globs)
~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File
"/usr/local/sage-10.9.beta1/src/sage/doctest/forker.py", line 1158, in
compile_and_execute exec(compiled, globs) ~~~~^^^^^^^^^^^^^^^^^ File
"<doctest sage.rings.polynomial.multi_polynomial_ideal.?.variety[35]>",
line 1, in <module> I.variety(algorithm='msolve', proof=False) # optional -
msolve ~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File
"/usr/local/sage-10.9.beta1/src/sage/rings/polynomial/multi_polynomial_ideal.py",
line 304, in __call__ return self.f(self._instance, *args, **kwds)
~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File
"/usr/local/sage-10.9.beta1/src/sage/rings/polynomial/multi_polynomial_ideal.py",
line 2652, in variety return msolve.variety(self, ring, proof=proof)
~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^ File
"/usr/local/sage-10.9.beta1/src/sage/rings/polynomial/msolve.py", line 251,
in variety raise NotImplementedError(f"unsupported msolve output format:
{data}") ^^^^ UnboundLocalError: cannot access local variable 'data' where
it is not associated with a value
********************************************************************** 1
item had failures: 2 of 37 in
sage.rings.polynomial.multi_polynomial_ideal.?.variety [975 tests, 2
failures, 3.24s wall]
----------------------------------------------------------------------
src/bin/sage -t --long --warn-long 30.0
--random-seed=103198921344494641633707050883315226248
src/sage/rings/polynomial/multi_polynomial_ideal.py # 2 doctests failed
----------------------------------------------------------------------
Furthermore :
sage: integrate(cos(x), x) sin(x) sage: integrate(cos(x), x,
algorithm="maxima") sin(x) sage: integrate(cos(x), x, algorithm="sympy")
sin(x) sage: integrate(cos(x), x, algorithm="fricas") sin(x) sage:
integrate(cos(x), x, algorithm="giac") integrate(cos(x), x)
The latter is intriguing…
HTH,
Le lundi 29 décembre 2025 à 10:43:41 UTC+1, Volker Braun a écrit :
> As always, you can get the latest beta version from the "develop" git
> branch. Alternatively, the self-contained source tarball is at
> http://www.sagemath.org/download-latest.html
>
>
> 4015f9189b6 (tag: 10.9.beta1, github/develop) Updated SageMath version to
> 10.9.beta1
> 97ceea842a3 gh-41342: Fix a test failure with numpy 2.4
> 4ac58246a3c gh-41335: fix: support ideals over finite fields where p > 2^29
> 3ce19ea86ad gh-41333: Fix conftest.py being deleted by configure script
> 3d89a6312e9 gh-41329: Fix Deprecation Warning in conftest
> 7e8aa72df24 gh-41328: Fix integer overflow in is_small_power() for large
> int values
> 28523387ddf gh-41325: check that #41267 is really fixed
> 6946329a6bd gh-41322: purge old pythons from docs and metadata, update
> conda instructions
> 0fd9782d805 gh-41319: using https more in combinat headers
> 16d696077d2 gh-41314: Make several parts of the code base const-correct
> 5ace339eaab gh-41311: Make ode functionality tested, add const-correctness
> 1a379971f47 gh-41308: create a monoid of lattice polytopes
> 926e3f2d455 gh-41304: [docs] p-adic: Update docs to change
> printing-mode=digits to digits-unicode
> 844ba6a62fa gh-41286: bump m4ri to the latest version (20251207), drop
> upstreamed patch
> 52c656b1051 gh-41281: Update uv.lock for Python 3.14 compatibility
> 5cf037d5c3e gh-41188: Refactor degree sequence functions
> 0fe2572c1ed gh-41138: fix is_free method for new version Singular
> 9341c678202 gh-41107: Implement `isdisjoint` for finite sets
> 0c2fd7bd0f6 gh-41106: ⬆️ Bump actions/download-artifact from 4 to 6
> d341a84abba gh-41075: Try to fix binomial CI failure, take 2
> 174227bccb8 gh-40520: Use accelerate for Conda on macos
> 0495984ace9 gh-40470: Fix issue 40469: homology with generators=True for
> chain complexes with differentials whose entries contain numbers other than
> 0, 1 should give the correct answer.
> f0711cc2b2b gh-40108: Allow passing elements to OperationTable not closed
> under operation
> 4ec34ffab2e (tag: 10.9.beta0) Updated SageMath version to 10.9.beta0
>
--
You received this message because you are subscribed to the Google Groups
"sage-release" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To view this discussion visit
https://groups.google.com/d/msgid/sage-release/7b78e918-bbae-4a68-a562-9d53c6ab92bdn%40googlegroups.com.