thank you so much for your help .

On 30 Nov., 22:24, "David Joyner" <[EMAIL PROTECTED]> wrote:
> Unfortunately, at the moment it has to be a permutation group. Here is one 
> way:
>
> sage: F = GF(5)
> sage: S = SL(2,5); S.gens()
>
> [
> [2 0]
> [0 3],
> [4 1]
> [4 0]
> ]
> sage: gens = [matrix(F,2,[2,0, 0, 3]), matrix(F,2, [4,1, 4,0])]
> sage: G = MatrixGroup(gens); G
>
> Matrix group over Finite Field of size 5 with 2 generators:
>  [[[2, 0], [0, 3]], [[4, 1], [4, 0]]]
> sage: G.as_permutation_group().sylow_subgroup(3)
> Permutation Group with generators
> [(1,6,19)(2,3,16)(4,5,18)(7,22,17)(8,9,21)(10,24,15)(11,20,14)(12,13,23)]
> sage:
>
> On Sun, Nov 30, 2008 at 4:11 PM, [EMAIL PROTECTED] <[EMAIL PROTECTED]> wrote:
>
> > thanks for your help
> > I tried this command but i got this error
> > 'SpecialLinearGroup_finite_field' object has no
> > attribute 'sylow_subgroup'
>
> > s=SL(2,FiniteField(5))
> > s.sylow_subgroup(2)
>
> > On 30 Nov., 21:32, "David Joyner" <[EMAIL PROTECTED]> wrote:
> >> Yes,
>
> >> sage: G = PGL(2,3)
> >> sage: G.sylow_subgroup(3)
> >> Permutation Group with generators [(2,4,3)]
>
> >> Type
>
> >> sage: G.sylow_subgroup?
>
> >> for more details.
>
> >> +++++++++++++++++++++++++++++++++++++++++++++++
>
> >> On Sun, Nov 30, 2008 at 2:35 PM, [EMAIL PROTECTED] <[EMAIL PROTECTED]> 
> >> wrote:
>
> >> > Hallo
> >> > I am  newbie
> >> > is there are in sage any command for  Sylow p-subgroups ?
> >> > with my best regards
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to