On Fri, Dec 19, 2008 at 4:57 AM, Jan Groenewald <j...@aims.ac.za> wrote:
>

...

>
>   sage: A=matrix([[1,2],[2,1]]);A
>
>   [1 2]
>   [2 1]
>   sage: eig=A.eigenvectors_right();eig
>
>   [(3, [
>   (1, 1)
>   ], 1), (-1, [
>   (1, -1)
>   ], 1)]
>   sage: v=eig[0][1][0];v
>   (1, 1)
>   sage: var('t')
>   t
>   sage: type(v)
>   <type 'sage.modules.vector_rational_dense.Vector_rational_dense'>
>   sage: type(v*t)
>   <type 'sage.modules.free_module_element.FreeModuleElement_generic_dense'>
>
> For instance, I want to subtract v*t from A*v which is not
> possible in sage.
>
> I think this would have worked if v*t was of the type
> sage.modules.vector_rational_dense.Vector_rational_dense
> just like v. I think it should be that type?
>
>   sage: A*v-v*t
>   ---------------------------------------------------------------------------
>   TypeError                                 Traceback (most recent call last)
>

...

>
> A workaround we are using in the meantime:
>
>   sage: A*v-v*identity_matrix(2)*t
>   (3 - t, 3 - t)
>


I'm not sure this is a bug or a missing feature or what but here is
another workaround:

sage: t^0*A*v-t*v
(3 - t, 3 - t)



> I still don't get it though, the v*identity_matrix(2)*t has the same type as 
> v*t, why
> does that even work as a workaround?
>
>   sage: type(v*t)
>   <type 'sage.modules.free_module_element.FreeModuleElement_generic_dense'>
>   sage: type(v*identity_matrix(2)*t)
>   <type 'sage.modules.free_module_element.FreeModuleElement_generic_dense'>
>   sage: type(A*v)
>   <type 'sage.modules.vector_rational_dense.Vector_rational_dense'>
>   sage: type(A*v-v*identity_matrix(2)*t)
>   <type 'sage.modules.free_module_element.FreeModuleElement_generic_dense'>
>
> I hope that is clearer.
>
> regards,
> Jan
>
> >
>

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-support@googlegroups.com
To unsubscribe from this group, send email to 
sage-support-unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to