2013/10/8 Peter Prettenhofer <peter.prettenho...@gmail.com>:
> that's a bug - I'll open a ticket for it.
> A quick fix: call partial_fit instead of fit just before the ``for`` loop.

Peter, is this due to an optimization that turns coef_ into a
Fortran-ordered array? If so, I don't think we need it any longer with
NumPy 1.7 and the new sklearn.extmath.fast_dot:

In [1]: X = np.random.randn(10000, 200)

In [2]: Y = np.random.randn(200, 70)

In [3]: %timeit np.dot(X, Y)
100 loops, best of 3: 16.5 ms per loop

In [4]: Yf = asfortranarray(Y)

In [5]: %timeit np.dot(X, Yf)
100 loops, best of 3: 16.7 ms per loop

In [6]: numpy.__version__
Out[6]: '1.7.1'

------------------------------------------------------------------------------
October Webinars: Code for Performance
Free Intel webinars can help you accelerate application performance.
Explore tips for MPI, OpenMP, advanced profiling, and more. Get the most from 
the latest Intel processors and coprocessors. See abstracts and register >
http://pubads.g.doubleclick.net/gampad/clk?id=60134071&iu=/4140/ostg.clktrk
_______________________________________________
Scikit-learn-general mailing list
Scikit-learn-general@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/scikit-learn-general

Reply via email to