Thank you, Nicolas. Huan On Fri, Feb 15, 2019 at 7:52 PM Huan Tran <hua...@gmail.com> wrote:
> Dear community, > > I did a very small pca analysis on a 3D data to print out the > explained_variance. I found that with scikit-learn 0.18.1 AND 0.20.2, the > results are significantly different. In particular, for 0.18.1 I got > +3.875925353581E+00 +3.270175297443E+00 +2.207814537475E+00 > > and with 0.20.2, I got > +4.651110424297E+00 +3.924210356932E+00 +2.649377444970E+00 > > Could anyone has a hint on what is going on? FYI, my data and code are > enclosed. Many thanks. > > Huan > > My data is > > -3.117642E+00, 1.453819E+00, -7.952874E-02 > 3.081224E+00, 1.453819E+00, -7.952874E-02 > 1.376932E-01, -2.491454E+00, -1.908521E-01 > 9.578602E-02, 3.632759E+00, -1.908521E-01 > -1.238644E-01, 5.396424E-02, -3.147031E+00 > 6.335262E-01, 1.393937E+00, 2.500474E+00 > > and my code is > > import pandas as pd > import numpy as np > from sklearn import decomposition > > df = pd.read_csv('data', delimiter=',', header=None) > data = np.array(df) > > X = data[:,:] > data_size = X.shape[0] > feature_dim = X.shape[1] > > print X > > pca = decomposition.PCA(n_components=feature_dim) > X_transformed = pca.fit_transform(X) > print "%+4.12E %+4.12E %+4.12E" %(pca.explained_variance_[0], > pca.explained_variance_[1], pca.explained_variance_[2]) > > >
_______________________________________________ scikit-learn mailing list scikit-learn@python.org https://mail.python.org/mailman/listinfo/scikit-learn