[
https://issues.apache.org/jira/browse/SPARK-30961?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Nicolas Renkamp updated SPARK-30961:
Description:
Hi,
there seems to be a bug in the arrow enabled to_pandas conversion from spark
dataframe to pandas dataframe when the dataframe has a column of type DateType.
Here is a minimal example to reproduce the issue:
{code:java}
spark = SparkSession.builder.getOrCreate()
is_arrow_enabled = spark.conf.get("spark.sql.execution.arrow.enabled")
print("Arrow optimization is enabled: " + is_arrow_enabled)
spark_df = spark.createDataFrame(
[['2019-12-06']], 'created_at: string') \
.withColumn('created_at', F.to_date('created_at'))
# works
spark_df.toPandas()
spark.conf.set("spark.sql.execution.arrow.enabled", 'true')
is_arrow_enabled = spark.conf.get("spark.sql.execution.arrow.enabled")
print("Arrow optimization is enabled: " + is_arrow_enabled)
# raises AttributeError: Can only use .dt accessor with datetimelike values
# series is still of type object, .dt does not exist
spark_df.toPandas(){code}
A fix would be to modify the _check_series_convert_date function in
pyspark.sql.types to:
{code:java}
def _check_series_convert_date(series, data_type):
"""
Cast the series to datetime.date if it's a date type, otherwise returns the
original series.:param series: pandas.Series
:param data_type: a Spark data type for the series
"""
from pyspark.sql.utils import require_minimum_pandas_version
require_minimum_pandas_version()from pandas import to_datetime
if type(data_type) == DateType:
return to_datetime(series).dt.date
else:
return series
{code}
Let me know if I should prepare a Pull Request for the 2.4.5 branch.
I have not tested the behavior on master branch.
Thanks,
Nicolas
was:
Hi,
there seems to be a bug in the arrow enabled to_pandas conversion from spark
dataframe to pandas dataframe when the dataframe has a column of type DateType.
Here is a minimal example to reproduce the issue:
{code:java}
spark = SparkSession.builder.getOrCreate()
is_arrow_enabled = spark.conf.get("spark.sql.execution.arrow.enabled")
print("Arrow optimization is enabled: " + is_arrow_enabled)
spark_df = spark.createDataFrame(
[['2019-12-06']], 'created_at: string') \
.withColumn('created_at', F.to_date('created_at'))
# works
spark_df.toPandas()
spark.conf.set("spark.sql.execution.arrow.enabled", 'true')
is_arrow_enabled = spark.conf.get("spark.sql.execution.arrow.enabled")
print("Arrow optimization is enabled: " + is_arrow_enabled)
# raises AttributeError
spark_df.toPandas(){code}
A fix would be to modify the _check_series_convert_date function in
pyspark.sql.types to:
{code:java}
def _check_series_convert_date(series, data_type):
"""
Cast the series to datetime.date if it's a date type, otherwise returns the
original series.:param series: pandas.Series
:param data_type: a Spark data type for the series
"""
from pyspark.sql.utils import require_minimum_pandas_version
require_minimum_pandas_version()from pandas import to_datetime
if type(data_type) == DateType:
return to_datetime(series).dt.date
else:
return series
{code}
Let me know if I should prepare a Pull Request for the 2.4.5 branch.
I have not tested the behavior on master branch.
Thanks,
Nicolas
> Arrow enabled: to_pandas with date column fails
> ---
>
> Key: SPARK-30961
> URL: https://issues.apache.org/jira/browse/SPARK-30961
> Project: Spark
> Issue Type: Bug
> Components: PySpark
>Affects Versions: 2.4.5
> Environment: Apache Spark 2.4.5
>Reporter: Nicolas Renkamp
>Priority: Major
> Labels: ready-to-commit
>
> Hi,
> there seems to be a bug in the arrow enabled to_pandas conversion from spark
> dataframe to pandas dataframe when the dataframe has a column of type
> DateType. Here is a minimal example to reproduce the issue:
> {code:java}
> spark = SparkSession.builder.getOrCreate()
> is_arrow_enabled = spark.conf.get("spark.sql.execution.arrow.enabled")
> print("Arrow optimization is enabled: " + is_arrow_enabled)
> spark_df = spark.createDataFrame(
> [['2019-12-06']], 'created_at: string') \
> .withColumn('created_at', F.to_date('created_at'))
> # works
> spark_df.toPandas()
> spark.conf.set("spark.sql.execution.arrow.enabled", 'true')
> is_arrow_enabled = spark.conf.get("spark.sql.execution.arrow.enabled")
> print("Arrow optimization is enabled: " + is_arrow_enabled)
> # raises AttributeError: Can only use .dt accessor with datetimelike values
> # series is still of type object, .dt does not exist
> spark_df.toPandas(){code}
> A fix would be to modify the _check_series_convert_date function in
> pyspark.sql.types to:
> {code:java}
> def _check_series_