Re: XmlReader not Parsing the Nested elements in XML properly

2020-06-30 Thread Sean Owen
This is more a question about spark-xml, which is not part of Spark.
You can ask at https://github.com/databricks/spark-xml/ but if you do
please show some example of the XML input and schema and output.

On Tue, Jun 30, 2020 at 11:39 AM mars76  wrote:
>
> Hi,
>
>   I am trying to read XML data from a Kafka topic and using XmlReader to
> convert the RDD[String] into a DataFrame conforming to predefined Schema.
>
>   One issue i am running into is after saving the final Data Frame to AVRO
> format most of the elements data is showing up in avro files. How ever the
> nested Element which is of Array Type is not getting parsed properly and
> getting loaded as null into the DF and hence when i save it to avro or to
> json that field is always null.
>
>   Not sure why this element is not getting parsed.
>
>
>   Here is the code i am using
>
>
>   kafkaValueAsStringDF = kafakDF.selectExpr("CAST(key AS STRING)
> msgKey","CAST(value AS STRING) xmlString")
>
>   var parameters = collection.mutable.Map.empty[String, String]
>
>   parameters.put("rowTag", "Book")
>
> kafkaValueAsStringDF.writeStream.foreachBatch {
>   (batchDF: DataFrame, batchId: Long) =>
>
>  val xmlStringDF:DataFrame = batchDF.selectExpr("xmlString")
>
> xmlStringDF.printSchema()
>
> val rdd: RDD[String] = xmlStringDF.as[String].rdd
>
>
> val relation = XmlRelation(
>   () => rdd,
>   None,
>   parameters.toMap,
>   xmlSchema)(spark.sqlContext)
>
>
> logger.info(".convert() : XmlRelation Schema ={}
> "+relation.schema.treeString)
>
> }
> .start()
> .awaitTermination()
>
>
> Thanks
> Sateesh
>
>
>
> --
> Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/
>
> -
> To unsubscribe e-mail: user-unsubscr...@spark.apache.org
>

-
To unsubscribe e-mail: user-unsubscr...@spark.apache.org



XmlReader not Parsing the Nested elements in XML properly

2020-06-30 Thread mars76
Hi,

  I am trying to read XML data from a Kafka topic and using XmlReader to
convert the RDD[String] into a DataFrame conforming to predefined Schema.

  One issue i am running into is after saving the final Data Frame to AVRO
format most of the elements data is showing up in avro files. How ever the
nested Element which is of Array Type is not getting parsed properly and
getting loaded as null into the DF and hence when i save it to avro or to
json that field is always null.

  Not sure why this element is not getting parsed.

 
  Here is the code i am using 


  kafkaValueAsStringDF = kafakDF.selectExpr("CAST(key AS STRING)
msgKey","CAST(value AS STRING) xmlString")

  var parameters = collection.mutable.Map.empty[String, String]

  parameters.put("rowTag", "Book")

kafkaValueAsStringDF.writeStream.foreachBatch {
  (batchDF: DataFrame, batchId: Long) =>

 val xmlStringDF:DataFrame = batchDF.selectExpr("xmlString")

xmlStringDF.printSchema()

val rdd: RDD[String] = xmlStringDF.as[String].rdd


val relation = XmlRelation(
  () => rdd,
  None,
  parameters.toMap,
  xmlSchema)(spark.sqlContext)


logger.info(".convert() : XmlRelation Schema ={}
"+relation.schema.treeString)

}
.start()
.awaitTermination()
  

Thanks
Sateesh



--
Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/

-
To unsubscribe e-mail: user-unsubscr...@spark.apache.org