Re: stream interfaces - with ranges

2012-05-21 Thread Martin Nowak
Well, because that's what i/o buffers are :)  There isn't an OS  
primitive that reads a file descriptor into an e.g. linked list.   
Anything other than a slice would go through a translation.



It's a pity that iovec and T[] have switch length/ptr fields.
Otherwise one could directly map read(ubyte[] bufs...) to libc.readv.

It did wrote a buffered range that uses a linked list to promote an
input range to a forward range. This is somewhat similar to lazy
ByteStrings in haskell.
There were some issue with reference counting and the implicit copy
in foreach loops but other than that it's fairly useful.

https://gist.github.com/1257196

The trouble with block-wise primitives (T[] input ranges) like byChunk is
that they make common things like parsing very difficult because the client
has to account for buffer wraps. Things like double buffering or a  
ringbuffer

would help for this.

martin


Re: stream interfaces - with ranges

2012-05-21 Thread Christophe Travert

I don't have time to read the whole discussion right now, but I've 
thought since our exchange here about buffered stream. I've imagined 
something close to, but quite different from you buffered stream, where 
the length of the buffer chunk can be adapted, and the buffer be poped 
by an arbitrary amount of bytes:

I reuse the name front, popFront and empty, but it may not be such a 
good idea.

struct BufferedStream(T)
{
  T[] buf;
  size_t cursor;
  size_t decoded;
  InputStream input;

  // returns a slice to the n next elements of the input stream.
  // this slice is valid until next call to front only.
  T[] front(size_t n)
  {
if (n <= decoded - cursor) return buf[cursor..cursor+n];
if (n <= buffer.length)
  {
   ... // move data to the front of the buffer and read new data to 
   // fill the buffer.
return buf[0..n];
  }
if (n > buf.length)
 {
   ... // resize buffer and read new data to fill the buffer
   return buf[0..n];
 }
  }
  // pop the next n elements from the buffer.
  void popFront(size_t n) { cursor += n; }
  void empty() { return input.eof && cursor == buf.length; }
}

This kind of buffered stream enable you read data by varying chunk size, 
but always read data by an amount that is convenient for the input 
stream. (and front could be made to return a buffer with the size that 
is most adequate for the stream when called with size_t.max as n).

More importantly, it allows to peak at an arbitrary amount of data, use 
it, and decide how many items you want to consume. For example, if 
allows to write stuff like "ReadAWord" without double buffering: you 
get enough characters from the buffer until you find a space, and then 
you consume only the characters that are the space.

"Steven Schveighoffer" , dans le message (digitalmars.D:167733), a
 écrit :
> OK, so I had a couple partially written replies on the 'deprecating
> std.stream etc' thread, then I had to go home.
> 
> But I thought about this a lot last night, and some of the things Andrei
> and others are saying is starting to make sense (I know!).  Now I've
> scrapped those replies and am thinking about redesigning my i/o package
> (most of the code can stay intact).
> 
> I'm a little undecided on some of the details, but here is what I think
> makes sense:
> 
> 1. We need a buffering input stream type.  This must have additional
> methods besides the range primitives, because doing one-at-a-time byte
> reads is not going to cut it.
> 2. I realized, buffering input stream of type T is actually an input range
> of type T[].  Observe:
> 
> struct /*or class*/ buffer(T)
> {
>   T[] buf;
>   InputStream input;
>   ...
>   @property T[] front() { return buf; }
>   void popFront() {input.read(buf);} // flush existing buffer, read  
> next.
>   @property bool empty() { return buf.length == 0;}
> }
> 
> Roughly speaking, not all the details are handled, but this makes a
> feasible input range that will perform quite nicely for things like
> std.algorithm.copy.  I haven't checked, but copy should be able to handle
> transferring a range of type T[] to an output range with element type T,
> if it's not able to, it should be made to work. 

Or with joiner(buffer);

> I know at least, an
> output stream with element type T supports putting T or T[].  What I think
> really makes sense is to support:
> 
> buffer!ubyte b;
> outputStream o;
> 
> o.put(b); // uses range primitives to put all the data to o, one element
> (i.e. ubyte[]) of b at a time

Of course, output stream should not have a consistent interface with 
input stream.

> 3. An ultimate goal of the i/o streaming package should be to be able to
> do this:
> 
> auto x = new XmlParser("");
> 
> or at least
> 
> auto x = new XmlParser(buffered(""));
> 
> So I think arrays need to be able to be treated as a buffering streams.  I
> tried really hard to think of some way to make this work with my existing
> system, but I don't think it will without unnecessary baggage, and losing
> interoperability with existing range functions.

A simple string stream can be built on top of a string, with no 
other member than the string itself, can't it ?
With my definition of buffered stream, at least, it can, and any array 
could support:
T[] front(size_t i) { return this[0..min(i, $)]; }
void popFront(size_t i) { this = this[i..$]; }

-- 
Christophe


Re: stream interfaces - with ranges

2012-05-19 Thread Masahiro Nakagawa

Please add README to top directory.
(Contents are benchmark command, support environment and etc)

We can see such information on web browser ;)

P.S.
I want to do pull request for supporting other environments.
But I'm busy right now...


Masahiro

On Saturday, 19 May 2012 at 15:22:37 UTC, kenji hara wrote:

Sorry, I have updated it.
Run 'make runbench' or 'make runbench_opt'.

Kenji Hara

2012/5/19 Artur Skawina :

On 05/18/12 17:43, kenji hara wrote:

I'm designing experimental IO primitives:
https://github.com/9rnsr/dio


It has a sample benchmark to compare performance with 
std.stdio for

line iteration.


It's not exactly what i had i mind, but i tried to build it;
it wants a 'io/wrapper.d' module which can not be found.

artur





Re: stream interfaces - with ranges

2012-05-19 Thread Masahiro Nakagawa

On Friday, 18 May 2012 at 19:18:21 UTC, Artur Skawina wrote:

On 05/18/12 20:18, Artur Skawina wrote:

On 05/18/12 17:43, kenji hara wrote:

I'm designing experimental IO primitives:
https://github.com/9rnsr/dio


It has a sample benchmark to compare performance with 
std.stdio for

line iteration.


It's not exactly what i had i mind, but i tried to build it;
it wants a 'io/wrapper.d' module which can not be found.


And is apparently windows-only; missing HANDLE type, non-
existent TextOutputRange. I gave up after running into:

io/file.d:263: Error: static assert  (isSource!(File)) is false



Current dio is PoC for new IO design.
If we go with such design, I will add Linux/Mac support to dio.


Masahiro


Re: stream interfaces - with ranges

2012-05-19 Thread kenji hara
Sorry, I have updated it.
Run 'make runbench' or 'make runbench_opt'.

Kenji Hara

2012/5/19 Artur Skawina :
> On 05/18/12 17:43, kenji hara wrote:
>> I'm designing experimental IO primitives:
>> https://github.com/9rnsr/dio
>
>> It has a sample benchmark to compare performance with std.stdio for
>> line iteration.
>
> It's not exactly what i had i mind, but i tried to build it;
> it wants a 'io/wrapper.d' module which can not be found.
>
> artur


Re: stream interfaces - with ranges

2012-05-18 Thread Artur Skawina
On 05/18/12 17:43, kenji hara wrote:
> I'm designing experimental IO primitives:
> https://github.com/9rnsr/dio

> It has a sample benchmark to compare performance with std.stdio for
> line iteration.

It's not exactly what i had i mind, but i tried to build it;
it wants a 'io/wrapper.d' module which can not be found.

artur


Re: stream interfaces - with ranges

2012-05-18 Thread Artur Skawina
On 05/18/12 20:18, Artur Skawina wrote:
> On 05/18/12 17:43, kenji hara wrote:
>> I'm designing experimental IO primitives:
>> https://github.com/9rnsr/dio
> 
>> It has a sample benchmark to compare performance with std.stdio for
>> line iteration.
> 
> It's not exactly what i had i mind, but i tried to build it;
> it wants a 'io/wrapper.d' module which can not be found.

And is apparently windows-only; missing HANDLE type, non-
existent TextOutputRange. I gave up after running into:

io/file.d:263: Error: static assert  (isSource!(File)) is false

artur


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 13:27:22 -0400, kenji hara  wrote:


2012/5/19 Steven Schveighoffer :
On Fri, 18 May 2012 10:39:55 -0400, kenji hara   
wrote:

I'm designing experimental IO primitives:
https://github.com/9rnsr/dio


I'm having trouble following the code, is there a place with the  
generated

docs?   I'm looking for an overview to understand where to look.


I have created gh-pages:
http://9rnsr.github.com/dio/d/io_core.html


OK, *now* I understand what you mean by non-blocking.  There are some I/O  
packages that use asynchronous i/o which return even before any data is  
given to the buffer.  I thought this is what you were talking about.


I'm fully on board with synchronous but non-blocking.  That's what I  
assumed we would be doing, and it's well supported by low-level OS  
routines on all OSes.


In my implementation for a buffer, I have two calls:

read(buf[]) -> read until buf.length bytes are read or EOF
readPartial(buf[]) -> read from 1 to buf.length bytes, but performs at  
most 1 low-level read.  Returns 0 bytes on EOF.


readPartial will block if no data is yet available, but obviously can be  
made to not block if the underlying OS handle is marked as non-blocking (I  
need to add some extra structure to account for this).


Typically, this is the normal mechanism that I use for reading data that  
is not always available.  First, I select on a socket until data is  
available, then use synchronous read to get whatever data exists.


continuing reading...

-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread kenji hara
2012/5/19 Steven Schveighoffer :
> On Fri, 18 May 2012 10:39:55 -0400, kenji hara  wrote:
[snip]
>
> On non-blocking i/o, why not just not support range interface at all?  I
> don't have any problem with that.  In other words, if your input source is
> non-blocking, and you try to use range primitives, it simply won't work.
>
> I admit, all of my code so far is focused on blocking i/o.  I have some
> experience with non-blocking i/o, but it was to make a blocking interface
> that supported waiting for data with a timeout.  Making a cross-platform
> (i.e. both windows and Posix) non-blocking interface is difficult because
> you use very different mechanisms on both OSes.
>
> And a lot of times, you don't want non-blocking i/o, but rather parallel
> i/o.

[snip]
>> No, we cannot map output range concept to non-blocking output. 'put'
>> operation always requires blocking.
>
> Yes, but again, put can use whatever stream primitives we have.
>
> In other words, it's quite possible to write range primitives which utilize
> stream primitivies.  It's impossible to write good stream primitives which
> utilize range primitives.

[snip]
>> My policy is very similar. But, as described above, I think range
>> cannot cover non-blocing IO.
>> And I think non-blocking IO interface is important for library
>> implementations.
>
>
> I think you misunderstand, I'm not trying to make ranges be the base of i/o,
> I'm trying to expose a range interface *based on* stream i/o interface.

The reasons why not use range primitives directly for stream I/O.

1. To specify a buffer for storing read bytes from upper layer.

Input range doesn't have a way to specify buffer for storing read
bytes to lower layer.
Because input range is designed as a view of underlying container.

Comparison of primitive count.
The four or more primitives: empty + front + popFront +
specifiy-buffer-for-storing-read-bytes + ...
vs.
My 'pull' primitive

Which is better?

2. To avoid confusing I/O operation/interfaces and range ones.

Yes, if you only needs blocking-io, you can use range i/f instead of
i/o specific primitives, but it is very confusable.
I think that enforcing to wrap IO objects (like File) with thin range
wrapper is better for orthogonality.

  foreach (ubyte b; RawFile(fname).ranged) { ... }

Kenji Hara


Re: stream interfaces - with ranges

2012-05-18 Thread Artur Skawina
On 05/18/12 17:43, kenji hara wrote:
> 2012/5/19 Artur Skawina :
>> On 05/18/12 15:51, kenji hara wrote:
>>> OK. If reading bytes from underlying device failed, your 'fronts' can
>>> return empty slice. I understood.
>>> But, It is still *not efficient*. The returned slice will specifies a
>>> buffer controlled by underlying device. If you want to gather bytes
>>> into one chunk, you must copy bytes from returned slice to your chunk.
>>> We should reduce copying memories as much as possible.
>>
>> Depends if your input range supports zero-copy or not. IOW you avoid
>> the copy iff the range can somehow write the data directly to the caller
>> provided buffer. This can be true eg for file reads, where you can tell
>> the read(2) syscall to write into the user buffer. But what if you need to
>> buffer the stream? An intermediate buffer can become necessary anyway.
>> But, as i said before, i agree that a caller-provided-buffer-interface
>> is useful.
>>
>>   E[] fronts();
>>   void fronts(ref E[]);
>>
>> And one can be implemented in terms of the other, ie:
>>
>>  E[] fronts[] { E[] els; fronts(els); return els; }
>>  void fronts(ref E[] e) { e[] = fronts()[]; }
> 
> The flaw of your design is, the memory to store read bytes/elements is
> allocated by the lower layer.

It's a feature. :)

> E.g. If you want to construct linked list of some some elements, you
> must copy elements from returned slice to new allocated node. I think
> it is still inefficient.
> 
>> depending on which is more efficient. A range can provide
>>
>>  enum bool HasBuffer = 0 || 1;
>>
>> so that the user can pick the more suited alternative.
> 
> I think fewer primitives as possible is better design than adding
> extra/optional primitives.

If you pick just one scheme, then you will end up with an unnecessary
copy sometimes. Or using non-std APIs. Again, I'm saying *both* caller-
owned-buffer *and* range-owned-buffer interfaces should be defined.
Otherwise, code that needs decent performance will not be able to use
the pure range API, and will not interoperate well with "std" code.

> How many primitives in your interface design?

Multi-element versions of front, popFront and puts. I think this
was enough to get things working; this is the tested and proven part.

Then there's 'available' and 'free', so that it's possible to 
avoid blocking. And 'allocate' and 'release', for zero-copy output
streams. But i don't remember if i've actually used these parts, i
don't think i needed them.
This is all from memory, as the last time i worked on this was a while
ago, just before i ran into:

   
http://www.digitalmars.com/d/archives/digitalmars/D/dtors_in_shared_structs_fail_to_compile_157978.html

...

>>> And, 'put' primitive in output range concept doesn't support non-blocikng 
>>> write.
>>> 'put' should consume *all* of given data and write it  to underlying
>>> device, then it would block.
>>
>> True, a write-as-much-as-possible-but not-more primitive is needed.
>>
>>   size_t puts(E[], size_t atleast=size_t.max);
>>
>> or something like that. (Doing it this way allows for explicit
>> non-blocking 'puts', ie '(written=puts(els, 0))==0' means EAGAIN.)
>>
>>> Therefore, whole of range concept doesn't cover non-blocking I/O.
> 
> I can agree for the signatures. but the names 'fronts' and 'puts' are
> a little too similar.

The names are bad, i know... If anybody has better suggestions... (and
almost any other names would be better :) )


artur


Re: stream interfaces - with ranges

2012-05-18 Thread kenji hara
2012/5/19 Steven Schveighoffer :
> On Fri, 18 May 2012 10:39:55 -0400, kenji hara  wrote:
 I'm designing experimental IO primitives:
 https://github.com/9rnsr/dio
>
> I'm having trouble following the code, is there a place with the generated
> docs?   I'm looking for an overview to understand where to look.

I have created gh-pages:
http://9rnsr.github.com/dio/d/io_core.html

Kenji Hara


Re: stream interfaces - with ranges

2012-05-18 Thread David Nadlinger

On Friday, 18 May 2012 at 16:38:22 UTC, Andrei Alexandrescu wrote:
Range concept is good abstraction if underlying container 
controlls
ownership. But, in I/O we want to *move* ownership of bytes. 
Range is

not designed efficiently for the purpose, IMO.


Yes, yes, yes. Perfect thinking.


And I think the issues you brought up some time ago regarding to 
orphan ranges and non-GC allocators are also rooted in this fact, 
i.e. that the design of ranges is completely oblivious to data 
ownership concerns.


But as you said, it's a very convenient interface for algorithms, 
so…


David


Re: stream interfaces - with ranges

2012-05-18 Thread Andrei Alexandrescu

On 5/18/12 8:51 AM, kenji hara wrote:

OK. If reading bytes from underlying device failed, your 'fronts' can
return empty slice. I understood.
But, It is still *not efficient*. The returned slice will specifies a
buffer controlled by underlying device. If you want to gather bytes
into one chunk, you must copy bytes from returned slice to your chunk.
We should reduce copying memories as much as possible.


Yah, this goes back to the fact that ranges are by definition buffered; 
there's no way to escape that.


So as I said, we need to add unbuffered primitives (e.g. "Here's a 
buffer, fill it with data). They would work with both inputs that have 
no buffering at all, and with ranges.



And, 'put' primitive in output range concept doesn't support non-blocikng write.
'put' should consume *all* of given data and write it  to underlying
device, then it would block.


Right.

Zero-copy I/O is a possibility, we need to define primitives for 
destructively transferring buffers to and from streams/ranges.



Therefore, whole of range concept doesn't cover non-blocking I/O.


Correct. Doesn't cover zero-copy I/O either.

It's interesting to think what primitives we should define, and what 
algorithms can take advantage of them beyond just copy().



I'm designing experimental IO primitives:
https://github.com/9rnsr/dio


Had only time to skim it, looks very promising.


Range concept is good abstraction if underlying container controlls
ownership. But, in I/O we want to *move* ownership of bytes. Range is
not designed efficiently for the purpose, IMO.


Yes, yes, yes. Perfect thinking. (What ranges are good at though is for 
algorithms to mess with.)




Andrei


Re: stream interfaces - with ranges

2012-05-18 Thread Andrei Alexandrescu

On 5/18/12 8:27 AM, Steven Schveighoffer wrote:

But be clear, I am *not* going to remove the existing stream I/O
primitives I had for buffered i/o, I'm rather *adding* range primitives
as well.


That sounds very promising.

Andrei


Re: stream interfaces - with ranges

2012-05-18 Thread Mehrdad
On Friday, 18 May 2012 at 16:16:21 UTC, Steven Schveighoffer 
wrote:

No, by range of T[] I mean this:

static assert(isInputRange!Range && is(ElementType!Range == 
T[]));


-Steve


Yes, I believe I understood it correctly...

In the case of ReadFileScatter, each T[] has the size of (at 
most) 1 page.


In the case of a random linked list, each T[] has the size of 1 
element.


Hence you can represent both of them as "a range of T[]", but 
really, that's just trying to fit it into a mold instead of 
creating the mold based on the actual thing.


What it *really* is is just a discontiguous buffer...


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 12:02:16 -0400, Mehrdad  wrote:


On Friday, 18 May 2012 at 15:57:20 UTC, Steven Schveighoffer wrote:

So?  So can a range of T[].

I'm not getting your point yet...

-Steve


Well you mentioned "There isn't an OS primitive that reads a file  
descriptor into an e.g. linked list, anything other than a slice would  
go through a translation.", but I was just pointing out that there is,  
and that it doesn't go through any translation. I guess you /can/ call  
it a "range of T[]", but then, you can *also* call a linked list "a  
range of T[]"... where each T[] has one element. That's not very useful  
tho, since their nature is kinda different..


No, by range of T[] I mean this:

static assert(isInputRange!Range && is(ElementType!Range == T[]));

-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread Mehrdad
On Friday, 18 May 2012 at 15:57:20 UTC, Steven Schveighoffer 
wrote:

So?  So can a range of T[].

I'm not getting your point yet...

-Steve


Well you mentioned "There isn't an OS primitive that reads a file 
descriptor into an e.g. linked list, anything other than a slice 
would go through a translation.", but I was just pointing out 
that there is, and that it doesn't go through any translation. I 
guess you /can/ call it a "range of T[]", but then, you can 
*also* call a linked list "a range of T[]"... where each T[] has 
one element. That's not very useful tho, since their nature is 
kinda different..


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 11:52:43 -0400, Mehrdad  wrote:


On Friday, 18 May 2012 at 15:49:23 UTC, Steven Schveighoffer wrote:


I beg to differ..

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspx


It still reads into an array of buffers, which are slices.  And the  
resulting "range" looks *exactly* like a range of T[].


-Steve


Uh, the resulting range can be totally discontiguous...


So?  So can a range of T[].

I'm not getting your point yet...

-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread Mehrdad
On Friday, 18 May 2012 at 15:49:23 UTC, Steven Schveighoffer 
wrote:


I beg to differ..

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspx


It still reads into an array of buffers, which are slices.  And 
the resulting "range" looks *exactly* like a range of T[].


-Steve


Uh, the resulting range can be totally discontiguous...


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 11:40:24 -0400, Mehrdad  wrote:


On Friday, 18 May 2012 at 13:44:43 UTC, Steven Schveighoffer wrote:
On Fri, 18 May 2012 03:52:51 -0400, Mehrdad   
wrote:



On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:
2. I realized, buffering input stream of type T is actually an input  
range of type T[].


The trouble is, why a slice? Why not an std.array.Array? Why not some  
other data source?

(Check/egg problem)


Well, because that's what i/o buffers are :)  There isn't an OS  
primitive that reads a file descriptor into an e.g. linked list.



I beg to differ..

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspx


It still reads into an array of buffers, which are slices.  And the  
resulting "range" looks *exactly* like a range of T[].


-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread kenji hara
2012/5/19 Artur Skawina :
> On 05/18/12 15:51, kenji hara wrote:
>> OK. If reading bytes from underlying device failed, your 'fronts' can
>> return empty slice. I understood.
>> But, It is still *not efficient*. The returned slice will specifies a
>> buffer controlled by underlying device. If you want to gather bytes
>> into one chunk, you must copy bytes from returned slice to your chunk.
>> We should reduce copying memories as much as possible.
>
> Depends if your input range supports zero-copy or not. IOW you avoid
> the copy iff the range can somehow write the data directly to the caller
> provided buffer. This can be true eg for file reads, where you can tell
> the read(2) syscall to write into the user buffer. But what if you need to
> buffer the stream? An intermediate buffer can become necessary anyway.
> But, as i said before, i agree that a caller-provided-buffer-interface
> is useful.
>
>   E[] fronts();
>   void fronts(ref E[]);
>
> And one can be implemented in terms of the other, ie:
>
>  E[] fronts[] { E[] els; fronts(els); return els; }
>  void fronts(ref E[] e) { e[] = fronts()[]; }

The flaw of your design is, the memory to store read bytes/elements is
allocated by the lower layer.
E.g. If you want to construct linked list of some some elements, you
must copy elements from returned slice to new allocated node. I think
it is still inefficient.

> depending on which is more efficient. A range can provide
>
>  enum bool HasBuffer = 0 || 1;
>
> so that the user can pick the more suited alternative.

I think fewer primitives as possible is better design than adding
extra/optional primitives.
How many primitives in your interface design?

>> And, 'put' primitive in output range concept doesn't support non-blocikng 
>> write.
>> 'put' should consume *all* of given data and write it  to underlying
>> device, then it would block.
>
> True, a write-as-much-as-possible-but not-more primitive is needed.
>
>   size_t puts(E[], size_t atleast=size_t.max);
>
> or something like that. (Doing it this way allows for explicit
> non-blocking 'puts', ie '(written=puts(els, 0))==0' means EAGAIN.)
>
>> Therefore, whole of range concept doesn't cover non-blocking I/O.

I can agree for the signatures. but the names 'fronts' and 'puts' are
a little too similar.


 I'm designing experimental IO primitives:
 https://github.com/9rnsr/dio

>> I have designed the 'pull' and 'push' primitives with two concepts:
>> 1. Reduce copying memories as far as possible.
>> 2. Control buffer memory under programer side, not device side.
>
> Do you have a contained microbenchmark? It would be easy to compare
> both approaches... If you do i'll write one using my scheme - so
> far i only did this for inter-thread communication, there's no file
> based backend.

It has a sample benchmark to compare performance with std.stdio for
line iteration.
In my PC, it is 2x faster in maximum.

>> In my io library, BufferedSink requires three primitives, flush,
>> commit, and writable.
>
> But what happens if neither flush nor commit is called?

If you forget to call 'commit', 0 length data will be written.
And if you forget to call 'flush', the committed data won't be written
to actual device.

Kenji Hara


Re: stream interfaces - with ranges

2012-05-18 Thread Mehrdad
On Friday, 18 May 2012 at 13:44:43 UTC, Steven Schveighoffer 
wrote:
On Fri, 18 May 2012 03:52:51 -0400, Mehrdad 
 wrote:


On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer 
wrote:
2. I realized, buffering input stream of type T is actually 
an input range of type T[].


The trouble is, why a slice? Why not an std.array.Array? Why 
not some other data source?

(Check/egg problem)


Well, because that's what i/o buffers are :)  There isn't an OS 
primitive that reads a file descriptor into an e.g. linked list.



I beg to differ..

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365469.aspx


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 10:39:55 -0400, kenji hara  wrote:


2012/5/18 Steven Schveighoffer :
On Fri, 18 May 2012 00:19:45 -0400, kenji hara   
wrote:



I think range interface is not useful for *efficient* IO. The expected
IO interface will be more *abstract* than range primitives.



If all you are doing is consuming data and processing it, range  
interface is

efficient.  Most streaming implementations that are synchronous use:

1. read block of data from low-level source into buffer
2. process buffer
3. If still data left, go to step 1.

1 is done via popFront, 2 is done via front.

3 is somewhat available via empty, but empty kind of depends on reading
data.  I think it can work.

It's not the ideal interface for all aspects of i/o, but it does map to
ranges, and for single purpose tasks (such as parse an XML file), it  
will be

most efficient.


Almost agree. When we want to do I/O, that is synchronous or  
asynchronous.

Only a few people would use non-blocking interface.
But for the library implementation, non-blocking interface is still  
important.

I think the non-blocking interface should be designed to avoid copying
as far as possible, and to achieve it with range interface is
impossible in general.


On non-blocking i/o, why not just not support range interface at all?  I  
don't have any problem with that.  In other words, if your input source is  
non-blocking, and you try to use range primitives, it simply won't work.


I admit, all of my code so far is focused on blocking i/o.  I have some  
experience with non-blocking i/o, but it was to make a blocking interface  
that supported waiting for data with a timeout.  Making a cross-platform  
(i.e. both windows and Posix) non-blocking interface is difficult because  
you use very different mechanisms on both OSes.


And a lot of times, you don't want non-blocking i/o, but rather parallel  
i/o.



---
If you use range I/F to read bytes from device, we will always do
blocking IO - even if the device is socket. It is not efficient.

auto sock = new TcpSocketDevice();
if (sock.empty) { auto e = sock.front; }
 // In empty primitive, we *must* wait the socket gets one or more
bytes or really disconnected.
 // If not, what exactly returns sock.front?
 // Then using range interface for socket reading enforces blocking
IO. It is *really* inefficient.
---



sockets do not have to be blocking, and I/O does not have to use the  
range

portion of the interface.

And efficient I/O has little to do with synchronicity and more to do  
with

reading a large amount of data at a time instead of byte by byte.

Using multi-threads or fibers, and using OS primitives such as select or
poll can make I/O quite efficient and allow you to do other things  
while no
I/O is happening.  These will not happen with range interface, but will  
be

available through other interfaces.


I have talked about *good I/O primitives for library implementation*.
I think range interface is one of the most useful concept for end
users, but not good one for people who want to implement efficient
libraries.


OK, I think we agree.  I am concerned about writing good library types  
that can efficiently use I/O.  The range interface will be for people who  
use the library and want to utilize existing range primitives for whatever  
purpose.





I think IO primitives must be distinct from range ones for the reasons
mentioned above...



Yes, I agree.  But ranges can be *mapped* to stream primitives.


No, we cannot map output range concept to non-blocking output. 'put'
operation always requires blocking.


Yes, but again, put can use whatever stream primitives we have.

In other words, it's quite possible to write range primitives which  
utilize stream primitivies.  It's impossible to write good stream  
primitives which utilize range primitives.





I'm designing experimental IO primitives:
https://github.com/9rnsr/dio



I'll take a look.


Thanks.


I'm having trouble following the code, is there a place with the generated  
docs?   I'm looking for an overview to understand where to look.


Your lib is quite extensive, mine is only one file ;)





In other words, range is not almighty. We should think distinct
primitives for the IO.



100% agree.  The main thing I realized that brought me to propose the
"range-based" (if you can call it that) version is that:

1. Ranges can be readily mapped to stream primitives *if* you use the
concept of a range of T[] vs. a range of T.  So in essence, without  
changing

anything I can slap on a range interface for free.
2. Arrays make very efficient data sources, and are easy to create.  We  
need

a way to hook stream-using code onto an array.

But be clear, I am *not* going to remove the existing stream I/O  
primitives

I had for buffered i/o, I'm rather *adding* range primitives as well.


My policy is very similar. But, as described above, I think range
cannot cover non-blocing IO.
And I think non-blocking IO interface is important for

Re: stream interfaces - with ranges

2012-05-18 Thread Andrei Alexandrescu

On 5/18/12 2:52 AM, Mehrdad wrote:

On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:

2. I realized, buffering input stream of type T is actually an input
range of type T[].


The trouble is, why a slice? Why not an std.array.Array? Why not some
other data source?
(Check/egg problem)


Because T[] is the fundamental representation of a typed contiguous area 
of storage.



Say you're tokenizing some input range, and it happens to just be a
huge, gigantic string.

It *should* be possible to turn it into tokens with slices referring to
the ORIGINAL string, which is VERY efficient because it doesn't require
*any* heap allocations whatsoever. (You just tokenize with opApply() as
you go, without every requiring a heap allocation...)

However, this is *only* possible if you don't use the concept of an
input range!


But e.g. splitter() does exactly as you say. It's a range and does not 
use memory allocation.



Andrei


Re: stream interfaces - with ranges

2012-05-18 Thread Artur Skawina
On 05/18/12 15:51, kenji hara wrote:
> 2012/5/18 Artur Skawina :
>> On 05/18/12 06:19, kenji hara wrote:
>>> I think range interface is not useful for *efficient* IO. The expected
>>> IO interface will be more *abstract* than range primitives.
>>>
>>> ---
>>> If you use range I/F to read bytes from device, we will always do
>>> blocking IO - even if the device is socket. It is not efficient.
>>>
>>> auto sock = new TcpSocketDevice();
>>> if (sock.empty) { auto e = sock.front; }
>>>   // In empty primitive, we *must* wait the socket gets one or more
>>> bytes or really disconnected.
>>
>> No. 'empty' has to return true only _after_ seeing EOF.
>>
>> Something like 'available' can return the number of elements known
>> to be fetchable w/o blocking. [1]
>>
>>>   // If not, what exactly returns sock.front?
>>
>> EWOULDBLOCK :^)
>>
>> But, yes, it needs to block, as there's no generic way to return
>> EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice
>> comes in - that one /can/ return an empty slice.
>> So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN.
>> (and note i'm oversimplifying -- 'fronts' can return something that
>> /acts/ as a slice; which is what i'm in fact are doing)
> 
> OK. If reading bytes from underlying device failed, your 'fronts' can
> return empty slice. I understood.
> But, It is still *not efficient*. The returned slice will specifies a
> buffer controlled by underlying device. If you want to gather bytes
> into one chunk, you must copy bytes from returned slice to your chunk.
> We should reduce copying memories as much as possible.

Depends if your input range supports zero-copy or not. IOW you avoid
the copy iff the range can somehow write the data directly to the caller
provided buffer. This can be true eg for file reads, where you can tell
the read(2) syscall to write into the user buffer. But what if you need to
buffer the stream? An intermediate buffer can become necessary anyway.
But, as i said before, i agree that a caller-provided-buffer-interface
is useful.

   E[] fronts();
   void fronts(ref E[]);

And one can be implemented in terms of the other, ie:

  E[] fronts[] { E[] els; fronts(els); return els; }
  void fronts(ref E[] e) { e[] = fronts()[]; }

depending on which is more efficient. A range can provide

  enum bool HasBuffer = 0 || 1;

so that the user can pick the more suited alternative.

> And, 'put' primitive in output range concept doesn't support non-blocikng 
> write.
> 'put' should consume *all* of given data and write it  to underlying
> device, then it would block.

True, a write-as-much-as-possible-but not-more primitive is needed.

   size_t puts(E[], size_t atleast=size_t.max);

or something like that. (Doing it this way allows for explicit
non-blocking 'puts', ie '(written=puts(els, 0))==0' means EAGAIN.)

> Therefore, whole of range concept doesn't cover non-blocking I/O.

See above.

>>>   // Then using range interface for socket reading enforces blocking
>>> IO. It is *really* inefficient.
>>
>>> I think IO primitives must be distinct from range ones for the reasons
>>> mentioned above...
>>>
>>> I'm designing experimental IO primitives:
>>> https://github.com/9rnsr/dio
>>>
>>> I call the input stream "source", and call output stream "sink".
>>> "source" has a 'pull' primitive, and sink has 'push' primitive, and
>>> they can avoid blocking.
>>> If you want to construct input range interface from "source", you
>>> should use 'ranged' helper function in io.core module. 'ranged'
>>> returns a wrapper object, and in its front method, It reads bytes from
>>> "source", and if the read bytes not sufficient, blocks the input.
>>>
>>> In other words, range is not almighty. We should think distinct
>>> primitives for the IO.
>>
>> Well, your 'pull' and 'push' are just different names for my 'fronts'
>> and 'puts' (modulo the data transfer interface, which can be done both
>> ways using a set of overloads, hence it doesn't matter).
>>
>> I don't see any reason to invent yet another abstraction, when ranges
>> can be made to work with some improvements.
> 
> For efficiency and removing bottlenecks.
> Even today, I / O is the slowest operation in the entire program.
> Providing good primitives for I/O is enough value.
> 
> I have designed the 'pull' and 'push' primitives with two concepts:
> 1. Reduce copying memories as far as possible.
> 2. Control buffer memory under programer side, not device side.

Do you have a contained microbenchmark? It would be easy to compare
both approaches... If you do i'll write one using my scheme - so
far i only did this for inter-thread communication, there's no file
based backend.

>> Ranges are just a convention; not a perfect one, but having /one/, not
>> two or thirteen, is valuable. If you think ranges are flawed the
>> discussion should be about ripping out every trace of them from the
>> language and libraries and replacing them with something better. If
>> you think that would be bad - well, h

Re: stream interfaces - with ranges

2012-05-18 Thread kenji hara
2012/5/18 Steven Schveighoffer :
> On Fri, 18 May 2012 00:19:45 -0400, kenji hara  wrote:
>
>> I think range interface is not useful for *efficient* IO. The expected
>> IO interface will be more *abstract* than range primitives.
>
>
> If all you are doing is consuming data and processing it, range interface is
> efficient.  Most streaming implementations that are synchronous use:
>
> 1. read block of data from low-level source into buffer
> 2. process buffer
> 3. If still data left, go to step 1.
>
> 1 is done via popFront, 2 is done via front.
>
> 3 is somewhat available via empty, but empty kind of depends on reading
> data.  I think it can work.
>
> It's not the ideal interface for all aspects of i/o, but it does map to
> ranges, and for single purpose tasks (such as parse an XML file), it will be
> most efficient.

Almost agree. When we want to do I/O, that is synchronous or asynchronous.
Only a few people would use non-blocking interface.
But for the library implementation, non-blocking interface is still important.
I think the non-blocking interface should be designed to avoid copying
as far as possible, and to achieve it with range interface is
impossible in general.

>> ---
>> If you use range I/F to read bytes from device, we will always do
>> blocking IO - even if the device is socket. It is not efficient.
>>
>> auto sock = new TcpSocketDevice();
>> if (sock.empty) { auto e = sock.front; }
>>  // In empty primitive, we *must* wait the socket gets one or more
>> bytes or really disconnected.
>>  // If not, what exactly returns sock.front?
>>  // Then using range interface for socket reading enforces blocking
>> IO. It is *really* inefficient.
>> ---
>
>
> sockets do not have to be blocking, and I/O does not have to use the range
> portion of the interface.
>
> And efficient I/O has little to do with synchronicity and more to do with
> reading a large amount of data at a time instead of byte by byte.
>
> Using multi-threads or fibers, and using OS primitives such as select or
> poll can make I/O quite efficient and allow you to do other things while no
> I/O is happening.  These will not happen with range interface, but will be
> available through other interfaces.

I have talked about *good I/O primitives for library implementation*.
I think range interface is one of the most useful concept for end
users, but not good one for people who want to implement efficient
libraries.

>> I think IO primitives must be distinct from range ones for the reasons
>> mentioned above...
>
>
> Yes, I agree.  But ranges can be *mapped* to stream primitives.

No, we cannot map output range concept to non-blocking output. 'put'
operation always requires blocking.

>> I'm designing experimental IO primitives:
>> https://github.com/9rnsr/dio
>
>
> I'll take a look.

Thanks.

>>
>> In other words, range is not almighty. We should think distinct
>> primitives for the IO.
>
>
> 100% agree.  The main thing I realized that brought me to propose the
> "range-based" (if you can call it that) version is that:
>
> 1. Ranges can be readily mapped to stream primitives *if* you use the
> concept of a range of T[] vs. a range of T.  So in essence, without changing
> anything I can slap on a range interface for free.
> 2. Arrays make very efficient data sources, and are easy to create.  We need
> a way to hook stream-using code onto an array.
>
> But be clear, I am *not* going to remove the existing stream I/O primitives
> I had for buffered i/o, I'm rather *adding* range primitives as well.

My policy is very similar. But, as described above, I think range
cannot cover non-blocing IO.
And I think non-blocking IO interface is important for library implementations.

Then I had taken a design that provides IO specific primitives.
Additionally I have added primitives to control underlying buffers
explicitly, because it is useful for some  byte processing - e.g.
encoding, taking a string with slicing the buffer, and so on.

Kenji Hara


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer
On Fri, 18 May 2012 07:05:50 -0400, Artur Skawina   
wrote:



On 05/18/12 06:19, kenji hara wrote:

I think range interface is not useful for *efficient* IO. The expected
IO interface will be more *abstract* than range primitives.

---
If you use range I/F to read bytes from device, we will always do
blocking IO - even if the device is socket. It is not efficient.

auto sock = new TcpSocketDevice();
if (sock.empty) { auto e = sock.front; }
  // In empty primitive, we *must* wait the socket gets one or more
bytes or really disconnected.


No. 'empty' has to return true only _after_ seeing EOF.

Something like 'available' can return the number of elements known
to be fetchable w/o blocking. [1]


  // If not, what exactly returns sock.front?


EWOULDBLOCK :^)

But, yes, it needs to block, as there's no generic way to return
EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice
comes in - that one /can/ return an empty slice.
So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN.
(and note i'm oversimplifying -- 'fronts' can return something that
/acts/ as a slice; which is what i'm in fact are doing)


I think this is an example of what Kenji and I are talking about -- trying  
to make the range interface map to *all* I/O situations.



I don't see any reason to invent yet another abstraction, when ranges
can be made to work with some improvements.

Ranges are just a convention; not a perfect one, but having /one/, not
two or thirteen, is valuable. If you think ranges are flawed the
discussion should be about ripping out every trace of them from the
language and libraries and replacing them with something better. If
you think that would be bad - well, having tens of different incompatible
abstractions isn't good either. (and, yes, you can provide glue so that
they can interact, but that does not scale well)


My opinion is that ranges should be available for i/o when you need to  
hook them to some other range processing code, but they shouldn't be the  
preferred interface for all I/O.


-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread kenji hara
2012/5/18 Artur Skawina :
> On 05/18/12 06:19, kenji hara wrote:
>> I think range interface is not useful for *efficient* IO. The expected
>> IO interface will be more *abstract* than range primitives.
>>
>> ---
>> If you use range I/F to read bytes from device, we will always do
>> blocking IO - even if the device is socket. It is not efficient.
>>
>> auto sock = new TcpSocketDevice();
>> if (sock.empty) { auto e = sock.front; }
>>   // In empty primitive, we *must* wait the socket gets one or more
>> bytes or really disconnected.
>
> No. 'empty' has to return true only _after_ seeing EOF.
>
> Something like 'available' can return the number of elements known
> to be fetchable w/o blocking. [1]
>
>>   // If not, what exactly returns sock.front?
>
> EWOULDBLOCK :^)
>
> But, yes, it needs to block, as there's no generic way to return
> EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice
> comes in - that one /can/ return an empty slice.
> So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN.
> (and note i'm oversimplifying -- 'fronts' can return something that
> /acts/ as a slice; which is what i'm in fact are doing)

OK. If reading bytes from underlying device failed, your 'fronts' can
return empty slice. I understood.
But, It is still *not efficient*. The returned slice will specifies a
buffer controlled by underlying device. If you want to gather bytes
into one chunk, you must copy bytes from returned slice to your chunk.
We should reduce copying memories as much as possible.

And, 'put' primitive in output range concept doesn't support non-blocikng write.
'put' should consume *all* of given data and write it  to underlying
device, then it would block.

Therefore, whole of range concept doesn't cover non-blocking I/O.

>>   // Then using range interface for socket reading enforces blocking
>> IO. It is *really* inefficient.
>
>> I think IO primitives must be distinct from range ones for the reasons
>> mentioned above...
>>
>> I'm designing experimental IO primitives:
>> https://github.com/9rnsr/dio
>>
>> I call the input stream "source", and call output stream "sink".
>> "source" has a 'pull' primitive, and sink has 'push' primitive, and
>> they can avoid blocking.
>> If you want to construct input range interface from "source", you
>> should use 'ranged' helper function in io.core module. 'ranged'
>> returns a wrapper object, and in its front method, It reads bytes from
>> "source", and if the read bytes not sufficient, blocks the input.
>>
>> In other words, range is not almighty. We should think distinct
>> primitives for the IO.
>
> Well, your 'pull' and 'push' are just different names for my 'fronts'
> and 'puts' (modulo the data transfer interface, which can be done both
> ways using a set of overloads, hence it doesn't matter).
>
> I don't see any reason to invent yet another abstraction, when ranges
> can be made to work with some improvements.

For efficiency and removing bottlenecks.
Even today, I / O is the slowest operation in the entire program.
Providing good primitives for I/O is enough value.

I have designed the 'pull' and 'push' primitives with two concepts:
1. Reduce copying memories as far as possible.
2. Control buffer memory under programer side, not device side.

> Ranges are just a convention; not a perfect one, but having /one/, not
> two or thirteen, is valuable. If you think ranges are flawed the
> discussion should be about ripping out every trace of them from the
> language and libraries and replacing them with something better. If
> you think that would be bad - well, having tens of different incompatible
> abstractions isn't good either. (and, yes, you can provide glue so that
> they can interact, but that does not scale well)

Range concept is good abstraction if underlying container controlls
ownership. But, in I/O we want to *move* ownership of bytes. Range is
not designed efficiently for the purpose, IMO.

> Hmm, how are 'flush()' and 'commit()' supposed to work? Is data lost
> if you omit one or both of them?

In my io library, BufferedSink requires three primitives, flush,
commit, and writable.

> artur
>
> [1] Reminds me:
>
>   struct S(T) {
>      shared T a;
>      @property size_t available()() { return a; }
>   }
>
> The compiler infers length as 'pure', which, depending on the
> definition of 'shared' is wrong. ('shared' /shouldn't/ imply 'volatile',
> but, as it is now, it does - so omitting a call to 'available' would
> be wrong)
>


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 03:52:51 -0400, Mehrdad  wrote:


On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer wrote:
2. I realized, buffering input stream of type T is actually an input  
range of type T[].


The trouble is, why a slice? Why not an std.array.Array? Why not some  
other data source?

(Check/egg problem)


Well, because that's what i/o buffers are :)  There isn't an OS primitive  
that reads a file descriptor into an e.g. linked list.  Anything other  
than a slice would go through a translation.


I don't know what std.array.Array is.


Another problem I've noticed is the following:


Say you're tokenizing some input range, and it happens to just be a  
huge, gigantic string.


It *should* be possible to turn it into tokens with slices referring to  
the ORIGINAL string, which is VERY efficient because it doesn't require  
*any* heap allocations whatsoever. (You just tokenize with opApply() as  
you go, without every requiring a heap allocation...)


However, this is *only* possible if you don't use the concept of an  
input range!


How so?  A slice is an input range, and so is a string.

Since you can't slice an input range, you'd be forced to use the front()  
and popFront() properties. But, as soon as you do that, you're gonna  
have to store the data somewhere... so your next-best option is to  
append it to some new gigantic array (instead of a bunch of small  
arrays, which require a lot of heap allocations), but even then, it's  
not as efficient as possible, because there's O(n) extra memory involved  
-- which defeats the whole purpose of working on small chunks at a time  
with no heap allocations.
(If you're going to do that, after all, you might as well read the  
entire thing into a giant string at the beginning, and work with an  
array anyway, discarding the whole idea of a range while doing your  
tokenization.)



Any ideas on how to solve this problem?


I think I get what you are saying here -- if you are processing, say, an  
XML file, and you want to split that into tokens, you have to dup each  
token from the stream, because the buffer may be reused.


But doing the same thing for a string would be wasteful.

I think in these cases, we need two types of parsing.  One is process the  
stream as it's read into a temporary buffer.  If you need data from the  
temporary buffer beyond the scope of the processing loop, you need to dup  
it.


Other way is read the entire file/stream into a buffer, then process that  
buffer with the knowledge that it's never going to change.


We probably can have buffer identify which situation it's in, so the code  
can make a runtime decision on whether to dup or not.


-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread Steven Schveighoffer

On Fri, 18 May 2012 00:19:45 -0400, kenji hara  wrote:


I think range interface is not useful for *efficient* IO. The expected
IO interface will be more *abstract* than range primitives.


If all you are doing is consuming data and processing it, range interface  
is efficient.  Most streaming implementations that are synchronous use:


1. read block of data from low-level source into buffer
2. process buffer
3. If still data left, go to step 1.

1 is done via popFront, 2 is done via front.

3 is somewhat available via empty, but empty kind of depends on reading  
data.  I think it can work.


It's not the ideal interface for all aspects of i/o, but it does map to  
ranges, and for single purpose tasks (such as parse an XML file), it will  
be most efficient.



---
If you use range I/F to read bytes from device, we will always do
blocking IO - even if the device is socket. It is not efficient.

auto sock = new TcpSocketDevice();
if (sock.empty) { auto e = sock.front; }
  // In empty primitive, we *must* wait the socket gets one or more
bytes or really disconnected.
  // If not, what exactly returns sock.front?
  // Then using range interface for socket reading enforces blocking
IO. It is *really* inefficient.
---


sockets do not have to be blocking, and I/O does not have to use the range  
portion of the interface.


And efficient I/O has little to do with synchronicity and more to do with  
reading a large amount of data at a time instead of byte by byte.


Using multi-threads or fibers, and using OS primitives such as select or  
poll can make I/O quite efficient and allow you to do other things while  
no I/O is happening.  These will not happen with range interface, but will  
be available through other interfaces.



I think IO primitives must be distinct from range ones for the reasons
mentioned above...


Yes, I agree.  But ranges can be *mapped* to stream primitives.


I'm designing experimental IO primitives:
https://github.com/9rnsr/dio


I'll take a look.



In other words, range is not almighty. We should think distinct
primitives for the IO.


100% agree.  The main thing I realized that brought me to propose the  
"range-based" (if you can call it that) version is that:


1. Ranges can be readily mapped to stream primitives *if* you use the  
concept of a range of T[] vs. a range of T.  So in essence, without  
changing anything I can slap on a range interface for free.
2. Arrays make very efficient data sources, and are easy to create.  We  
need a way to hook stream-using code onto an array.


But be clear, I am *not* going to remove the existing stream I/O  
primitives I had for buffered i/o, I'm rather *adding* range primitives as  
well.


-Steve


Re: stream interfaces - with ranges

2012-05-18 Thread Artur Skawina
On 05/18/12 13:34, Dmitry Olshansky wrote:
> On 18.05.2012 8:19, kenji hara wrote:
>> I think range interface is not useful for *efficient* IO. The expected
>> IO interface will be more *abstract* than range primitives.
>>
>> ---
>> If you use range I/F to read bytes from device, we will always do
>> blocking IO - even if the device is socket. It is not efficient.
>>
>> auto sock = new TcpSocketDevice();
>> if (sock.empty) { auto e = sock.front; }
>>// In empty primitive, we *must* wait the socket gets one or more
>> bytes or really disconnected.
>>// If not, what exactly returns sock.front?
>>// Then using range interface for socket reading enforces blocking
>> IO. It is *really* inefficient.
>> ---
> 
> There is no problem with blocking _interface_. That is the facade. The actual 
> work can happen in background thread (and in fact it often is).
> So while you work with first chunk the next one is downloaded behind the 
> scenes.
> Just take a look at std.net.curl all these asyncByChunk ... and then there is 
> vide.d that shows that having blocking interface for asynchronous i/o is 
> alright.

I just took a look, and yes, that's yet another slightly different 
implementation
of the same thing with a somewhat different interface:

   
https://github.com/rejectedsoftware/vibe.d/blob/399b7a9d6eba9b14ea8d2215498daf53bd8d27d8/source/vibe/stream/stream.d

I thought i was exaggerating when i said 'thirteen', but there are already
more of them mentioned in this thread than i could count on one hand...

This one has an implicit flush and also this: "Finalize has to be called on
certain types of streams.". Not to mention it's class based.

artur


Re: stream interfaces - with ranges

2012-05-18 Thread Dmitry Olshansky

On 18.05.2012 8:19, kenji hara wrote:

I think range interface is not useful for *efficient* IO. The expected
IO interface will be more *abstract* than range primitives.

---
If you use range I/F to read bytes from device, we will always do
blocking IO - even if the device is socket. It is not efficient.

auto sock = new TcpSocketDevice();
if (sock.empty) { auto e = sock.front; }
   // In empty primitive, we *must* wait the socket gets one or more
bytes or really disconnected.
   // If not, what exactly returns sock.front?
   // Then using range interface for socket reading enforces blocking
IO. It is *really* inefficient.
---


There is no problem with blocking _interface_. That is the facade. The 
actual work can happen in background thread (and in fact it often is).
So while you work with first chunk the next one is downloaded behind the 
scenes.
Just take a look at std.net.curl all these asyncByChunk ... and then 
there is vide.d that shows that having blocking interface for 
asynchronous i/o is alright.


--
Dmitry Olshansky


Re: stream interfaces - with ranges

2012-05-18 Thread Artur Skawina
On 05/18/12 06:19, kenji hara wrote:
> I think range interface is not useful for *efficient* IO. The expected
> IO interface will be more *abstract* than range primitives.
> 
> ---
> If you use range I/F to read bytes from device, we will always do
> blocking IO - even if the device is socket. It is not efficient.
> 
> auto sock = new TcpSocketDevice();
> if (sock.empty) { auto e = sock.front; }
>   // In empty primitive, we *must* wait the socket gets one or more
> bytes or really disconnected.

No. 'empty' has to return true only _after_ seeing EOF.

Something like 'available' can return the number of elements known
to be fetchable w/o blocking. [1]

>   // If not, what exactly returns sock.front?

EWOULDBLOCK :^)

But, yes, it needs to block, as there's no generic way to return
EAGAIN/EWOULDBLOCK. This is where the primitive returning a slice
comes in - that one /can/ return an empty slice.
So '!r.empty && r.fronts.length==0)' is the equivalent to EAGAIN.
(and note i'm oversimplifying -- 'fronts' can return something that
/acts/ as a slice; which is what i'm in fact are doing)

>   // Then using range interface for socket reading enforces blocking
> IO. It is *really* inefficient.

> I think IO primitives must be distinct from range ones for the reasons
> mentioned above...
> 
> I'm designing experimental IO primitives:
> https://github.com/9rnsr/dio
> 
> I call the input stream "source", and call output stream "sink".
> "source" has a 'pull' primitive, and sink has 'push' primitive, and
> they can avoid blocking.
> If you want to construct input range interface from "source", you
> should use 'ranged' helper function in io.core module. 'ranged'
> returns a wrapper object, and in its front method, It reads bytes from
> "source", and if the read bytes not sufficient, blocks the input.
> 
> In other words, range is not almighty. We should think distinct
> primitives for the IO.

Well, your 'pull' and 'push' are just different names for my 'fronts'
and 'puts' (modulo the data transfer interface, which can be done both
ways using a set of overloads, hence it doesn't matter).

I don't see any reason to invent yet another abstraction, when ranges
can be made to work with some improvements.

Ranges are just a convention; not a perfect one, but having /one/, not 
two or thirteen, is valuable. If you think ranges are flawed the
discussion should be about ripping out every trace of them from the
language and libraries and replacing them with something better. If
you think that would be bad - well, having tens of different incompatible
abstractions isn't good either. (and, yes, you can provide glue so that
they can interact, but that does not scale well)

Hmm, how are 'flush()' and 'commit()' supposed to work? Is data lost
if you omit one or both of them?

artur

[1] Reminds me:

   struct S(T) {
  shared T a;
  @property size_t available()() { return a; }
   }

The compiler infers length as 'pure', which, depending on the
definition of 'shared' is wrong. ('shared' /shouldn't/ imply 'volatile',
but, as it is now, it does - so omitting a call to 'available' would
be wrong)



Re: stream interfaces - with ranges

2012-05-18 Thread Roman D. Boiko

On Friday, 18 May 2012 at 07:52:57 UTC, Mehrdad wrote:
On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer 
wrote:
2. I realized, buffering input stream of type T is actually an 
input range of type T[].


The trouble is, why a slice? Why not an std.array.Array? Why 
not some other data source?

(Check/egg problem)




Another problem I've noticed is the following:


Say you're tokenizing some input range, and it happens to just 
be a huge, gigantic string.


It *should* be possible to turn it into tokens with slices 
referring to the ORIGINAL string, which is VERY efficient 
because it doesn't require *any* heap allocations whatsoever. 
(You just tokenize with opApply() as you go, without every 
requiring a heap allocation...)


However, this is *only* possible if you don't use the concept 
of an input range!


Since you can't slice an input range, you'd be forced to use 
the front() and popFront() properties. But, as soon as you do 
that, you're gonna have to store the data somewhere... so your 
next-best option is to append it to some new gigantic array 
(instead of a bunch of small arrays, which require a lot of 
heap allocations), but even then, it's not as efficient as 
possible, because there's O(n) extra memory involved -- which 
defeats the whole purpose of working on small chunks at a time 
with no heap allocations.
(If you're going to do that, after all, you might as well read 
the entire thing into a giant string at the beginning, and work 
with an array anyway, discarding the whole idea of a range 
while doing your tokenization.)



Any ideas on how to solve this problem?

Provide slicing if underlying data source is compatible.

I have the same need in my DCT, and so far I went with a custom 
implementation (not on Github yet), but plan to reuse std.io as 
soon as it will be more or less stable and usable.


Re: stream interfaces - with ranges

2012-05-18 Thread Mehrdad
On Thursday, 17 May 2012 at 14:02:09 UTC, Steven Schveighoffer 
wrote:
2. I realized, buffering input stream of type T is actually an 
input range of type T[].


The trouble is, why a slice? Why not an std.array.Array? Why not 
some other data source?

(Check/egg problem)




Another problem I've noticed is the following:


Say you're tokenizing some input range, and it happens to just be 
a huge, gigantic string.


It *should* be possible to turn it into tokens with slices 
referring to the ORIGINAL string, which is VERY efficient because 
it doesn't require *any* heap allocations whatsoever. (You just 
tokenize with opApply() as you go, without every requiring a heap 
allocation...)


However, this is *only* possible if you don't use the concept of 
an input range!


Since you can't slice an input range, you'd be forced to use the 
front() and popFront() properties. But, as soon as you do that, 
you're gonna have to store the data somewhere... so your 
next-best option is to append it to some new gigantic array 
(instead of a bunch of small arrays, which require a lot of heap 
allocations), but even then, it's not as efficient as possible, 
because there's O(n) extra memory involved -- which defeats the 
whole purpose of working on small chunks at a time with no heap 
allocations.
(If you're going to do that, after all, you might as well read 
the entire thing into a giant string at the beginning, and work 
with an array anyway, discarding the whole idea of a range while 
doing your tokenization.)



Any ideas on how to solve this problem?


Re: stream interfaces - with ranges

2012-05-17 Thread kenji hara
I think range interface is not useful for *efficient* IO. The expected
IO interface will be more *abstract* than range primitives.

---
If you use range I/F to read bytes from device, we will always do
blocking IO - even if the device is socket. It is not efficient.

auto sock = new TcpSocketDevice();
if (sock.empty) { auto e = sock.front; }
  // In empty primitive, we *must* wait the socket gets one or more
bytes or really disconnected.
  // If not, what exactly returns sock.front?
  // Then using range interface for socket reading enforces blocking
IO. It is *really* inefficient.
---
I think IO primitives must be distinct from range ones for the reasons
mentioned above...

I'm designing experimental IO primitives:
https://github.com/9rnsr/dio

I call the input stream "source", and call output stream "sink".
"source" has a 'pull' primitive, and sink has 'push' primitive, and
they can avoid blocking.
If you want to construct input range interface from "source", you
should use 'ranged' helper function in io.core module. 'ranged'
returns a wrapper object, and in its front method, It reads bytes from
"source", and if the read bytes not sufficient, blocks the input.

In other words, range is not almighty. We should think distinct
primitives for the IO.

Kenji Hara

2012/5/17 Steven Schveighoffer :
> OK, so I had a couple partially written replies on the 'deprecating
> std.stream etc' thread, then I had to go home.
>
> But I thought about this a lot last night, and some of the things Andrei
> and others are saying is starting to make sense (I know!).  Now I've
> scrapped those replies and am thinking about redesigning my i/o package
> (most of the code can stay intact).
>
> I'm a little undecided on some of the details, but here is what I think
> makes sense:
>
> 1. We need a buffering input stream type.  This must have additional
> methods besides the range primitives, because doing one-at-a-time byte
> reads is not going to cut it.
> 2. I realized, buffering input stream of type T is actually an input range
> of type T[].  Observe:
>
> struct /*or class*/ buffer(T)
> {
>     T[] buf;
>     InputStream input;
>     ...
>     @property T[] front() { return buf; }
>     void popFront() {input.read(buf);} // flush existing buffer, read next.
>     @property bool empty() { return buf.length == 0;}
> }
>
> Roughly speaking, not all the details are handled, but this makes a
> feasible input range that will perform quite nicely for things like
> std.algorithm.copy.  I haven't checked, but copy should be able to handle
> transferring a range of type T[] to an output range with element type T,
> if it's not able to, it should be made to work.  I know at least, an
> output stream with element type T supports putting T or T[].  What I think
> really makes sense is to support:
>
> buffer!ubyte b;
> outputStream o;
>
> o.put(b); // uses range primitives to put all the data to o, one element
> (i.e. ubyte[]) of b at a time
>
>
> 3. An ultimate goal of the i/o streaming package should be to be able to
> do this:
>
> auto x = new XmlParser("");
>
> or at least
>
> auto x = new XmlParser(buffered(""));
>
> So I think arrays need to be able to be treated as a buffering streams.  I
> tried really hard to think of some way to make this work with my existing
> system, but I don't think it will without unnecessary baggage, and losing
> interoperability with existing range functions.
>
> Where does this leave us?
>
> 1. I think we need, as Andrei says, an unbuffered streaming abstraction.
> I think I have this down pretty solidly in my current std.io.
> 2. A definition of a buffering range, in terms of what additional
> primitives the range should have.  The primitives should support buffered
> input and buffered output (these are two separate algorithms), but
> independently (possibly allowing switching for rw files).
> 3. An implementation of the above definition hooked to the unbuffered
> stream abstraction, to be utilized in more specific ranges.  But by
> itself, can be used as an input range or directly by code.
> 4. Specialization ranges for each type of input you want (i.e. byLine,
> byChunk, textStream).
> 5. Full replacement option of File backend.  File will start out with
> C-supported calls, but any "promotion" to using a more D-like range type
> will result in switching to a D-based stream using the above mechanisms.
> Of course, all existing code should compile that does not try to assume
> the File always has a valid FILE *.
>
> What do you all think?  I'm going to work out what the definition of 2
> should be, based on what I've written and what makes sense.
>
> Have I started to design something feasible or unworkable? :)
>
> -Steve


Re: stream interfaces - with ranges

2012-05-17 Thread Steven Schveighoffer
On Thu, 17 May 2012 11:46:18 -0400, Andrei Alexandrescu  
 wrote:



On 5/17/12 9:02 AM, Steven Schveighoffer wrote:

Roughly speaking, not all the details are handled, but this makes a
feasible input range that will perform quite nicely for things like
std.algorithm.copy. I haven't checked, but copy should be able to handle
transferring a range of type T[] to an output range with element type T,
if it's not able to, it should be made to work.


We can do this for copy, but if we need to specialize a lot of other  
algorithms, maybe we didn't strike the best design.


Right.  The thing is, buffered streams are good as plain ranges for one  
thing -- forwarding data.  There probably aren't many algorithms in  
std.algorithm that are applicable.  And there is always the put idiom,  
Appender.put(buf) should work to accumulate all data into an array, which  
can then be used as a normal range.


One thing that worries me, if you did something like  
array(bufferedStream), it would accumulate N copies of the buffer  
reference, which wouldn't be what you want at all.  Of course, you could  
apply map to buffer to dup it.



3. An ultimate goal of the i/o streaming package should be to be able to
do this:

auto x = new XmlParser("");

or at least

auto x = new XmlParser(buffered(""));

So I think arrays need to be able to be treated as a buffering streams.  
I
tried really hard to think of some way to make this work with my  
existing
system, but I don't think it will without unnecessary baggage, and  
losing

interoperability with existing range functions.


I think we can create a generic abstraction buffered() that layers  
buffering on top of an input range. If the input range has unbuffered  
read capability, buffered() would use those. Otherwise, it would use  
loops using empty, front, and popFront.


Right, this is different from my proposed buffer implementation, which  
puts a buffer on top of an unbuffered input *stream*.  But of course, we  
can define it for both, since it will be a compile-time interface.



Where does this leave us?

1. I think we need, as Andrei says, an unbuffered streaming abstraction.
I think I have this down pretty solidly in my current std.io.


Great. What are the primitives?


See here:
https://github.com/schveiguy/phobos/blob/new-io2/std/io.d#L170

Through IODevice.  The BufferedStream type is going to be redone as a  
range.



3. An implementation of the above definition hooked to the unbuffered
stream abstraction, to be utilized in more specific ranges. But by
itself, can be used as an input range or directly by code.


Hah, I can't believe I wrote about the same thing above (and I swear I  
didn't read yours).


Well, not quite :)  You wrote about it being supported by an underlying  
range, I need to have it supported by an underlying stream.  We probably  
need both.  But yeah, I think we are mostly on the same page here.



4. Specialization ranges for each type of input you want (i.e. byLine,
byChunk, textStream).


What is the purpose? To avoid unnecessary double buffering?


No, a specialization range *uses* a buffer range as its backing.  A buffer  
range I think is necessarily going to be a reference type (probably a  
class). The specialized range won't replace the buffer range, in other  
words.


Something like byLine is going to do the work of extracting lines from the  
buffer, it will reference the buffer data directly.  But it won't  
reimplement buffering.



5. Full replacement option of File backend. File will start out with
C-supported calls, but any "promotion" to using a more D-like range type
will result in switching to a D-based stream using the above mechanisms.
Of course, all existing code should compile that does not try to assume
the File always has a valid FILE *.


This will be tricky but probably doable.


Doing this will unify all the i/o packages together into one interface --  
File.  I think it's a bad story for D if you have 2 ways of doing i/o (or  
at least 2 ways of doing the *same thing* with i/o).


-Steve


Re: stream interfaces - with ranges

2012-05-17 Thread Andrei Alexandrescu

On 5/17/12 9:02 AM, Steven Schveighoffer wrote:

1. We need a buffering input stream type. This must have additional
methods besides the range primitives, because doing one-at-a-time byte
reads is not going to cut it.


I was thinking a range of T[] could be enough for a buffered input range.


2. I realized, buffering input stream of type T is actually an input range
of type T[]. Observe:


Ah, there we go :o).


struct /*or class*/ buffer(T)
{
T[] buf;
InputStream input;
...
@property T[] front() { return buf; }
void popFront() {input.read(buf);} // flush existing buffer, read next.
@property bool empty() { return buf.length == 0;}
}

Roughly speaking, not all the details are handled, but this makes a
feasible input range that will perform quite nicely for things like
std.algorithm.copy. I haven't checked, but copy should be able to handle
transferring a range of type T[] to an output range with element type T,
if it's not able to, it should be made to work.


We can do this for copy, but if we need to specialize a lot of other 
algorithms, maybe we didn't strike the best design.



I know at least, an
output stream with element type T supports putting T or T[].


Right.


What I think
really makes sense is to support:

buffer!ubyte b;
outputStream o;

o.put(b); // uses range primitives to put all the data to o, one element
(i.e. ubyte[]) of b at a time


I think that makes sense.


3. An ultimate goal of the i/o streaming package should be to be able to
do this:

auto x = new XmlParser("");

or at least

auto x = new XmlParser(buffered(""));

So I think arrays need to be able to be treated as a buffering streams. I
tried really hard to think of some way to make this work with my existing
system, but I don't think it will without unnecessary baggage, and losing
interoperability with existing range functions.


I think we can create a generic abstraction buffered() that layers 
buffering on top of an input range. If the input range has unbuffered 
read capability, buffered() would use those. Otherwise, it would use 
loops using empty, front, and popFront.



Where does this leave us?

1. I think we need, as Andrei says, an unbuffered streaming abstraction.
I think I have this down pretty solidly in my current std.io.


Great. What are the primitives?


2. A definition of a buffering range, in terms of what additional
primitives the range should have. The primitives should support buffered
input and buffered output (these are two separate algorithms), but
independently (possibly allowing switching for rw files).


Sounds good.


3. An implementation of the above definition hooked to the unbuffered
stream abstraction, to be utilized in more specific ranges. But by
itself, can be used as an input range or directly by code.


Hah, I can't believe I wrote about the same thing above (and I swear I 
didn't read yours).



4. Specialization ranges for each type of input you want (i.e. byLine,
byChunk, textStream).


What is the purpose? To avoid unnecessary double buffering?


5. Full replacement option of File backend. File will start out with
C-supported calls, but any "promotion" to using a more D-like range type
will result in switching to a D-based stream using the above mechanisms.
Of course, all existing code should compile that does not try to assume
the File always has a valid FILE *.


This will be tricky but probably doable.


Andrei