Re: [was ghc-devs] Reasoning backwards with type families

2017-12-13 Thread Anthony Clayden
On Thu, 14 Dec 2017 at 3:19 PM, David Feuer  wrote:

> I still haven't really digested what you've written, but I wish to pick a
> nit (below)
>

Thanks David. Heh, heh. I think we might be agreeing about the phenomenon,
but picking different nits to 'blame'.


> On Nov 20, 2017 3:44 AM, "Anthony Clayden" 
> wrote:
>
> > On Thu Nov 16 01:31:55 UTC 2017, David Feuer wrote:
>
> ...
>
>
>
> > For (&&), the obvious things you'd want are ...
> >
> > There's nothing inherently impossible about this sort of
> reasoning.
>
> No-ish but. It relies on knowing kind `Bool` is closed.
> And GHC doesn't pay attention to that.
> So you need to bring type family `Not`
> into the reasoning; hence a SMT solver.
>
>
> I don't think this is entirely correct. The fact that Bool is closed does
> not seem relevant.  The key fact, I believe, is that (&&) is closed.
>

Hmm. I wonder what you think "closed" amounts to?

Equation 1`'False && b= 'False` is consistent with `[b ~ Foo]`
   (unless GHC were to reason about closed kinds)

Equation 2`'True  && b = b   ` is consistent with `[b ~ Foo]`

And so on.

The last equation `a  && a= a` is consistent with `[a ~ Foo]`.
Furthermore it's *inconsistent* with a putative backwards FunDep ` r a ->
b` on `'False && 'True ~ 'False`.
I think it would be better to omit that equation all together.

Then when your o.p. reasons:

>>> ... we can calculate (Not a || Not b) as 'True for each of these LHSes.

What will it calculate for (Not Foo)?

Asking GHC to reason like this about open type families smells much harder,
> but maybe my sense of smell is off.
>
> Hmm. Your o.p. said

>>> In order for the constraint (a && b) ~ 'True to hold, the type family
application *must have reduced* using one of its equations.

I think that's smelly logic: if you want to reason backwards, then you
can't make assumptions about what "must" have reduced if GHC were
reasoning forward. That is, unless you're expecting GHC to behave like
an SMT solver over closed kinds.

Remember that the logic for selecting Closed Type Family equations
works from top to bottom *ignoring anything known about the result*.
So not only must it have reduced using one of the equations; it must
have rejected equations above the one it selected; and it must have
seen evidence for rejecting them. (It's more complicated than that in
practice: if there's coincident overlap, GHC will pick some equation
eagerly. And your `&&` equations exhibit coincident overlap, apart
from the last.)

If you want it to benefit from something known about the result, you
won't (in general) find the same top-to-bottom sequence helps with
type improvement. With the FunDep inconsistency in your last equation
for `&&`, I suspect that equation-selection will get 'stuck' looking
for evidence to reject earlier equations.

If we do expect GHC to behave like an SMT solver over closed kinds,
then it can reason just as well for an open type family; on the
proviso that it can see all the equations.

For a bit of history: during discussions around Injective Type
Families, one suggestion was to infer injectivity by examining the
equations given -- along the lines you're positing. That was rejected
on grounds the equations might exhibit injectivity 'by accident'. Also
that the programmer might intend injectivity, but their equations be
inconsistent. So it was decided there must be explicit declaration;
and the equations must be consistent with that declaration. No
equations for `&&` could be consistent that way.

AntC
___
Glasgow-haskell-users mailing list
Glasgow-haskell-users@haskell.org
http://mail.haskell.org/cgi-bin/mailman/listinfo/glasgow-haskell-users


Re: [was ghc-devs] Reasoning backwards with type families

2017-12-13 Thread Clinton Mead
Hi AntC

I've panicked GHC enough whilst developing Freelude so whilst I'm not sure
exactly what you're saying I'd be hestiant about exploiting anything bogus
(8.2 btw seems far more stable than 8.0 btw).

The trick is teaching GHC to do all the type trickery it needs so you can
write things like:

((f1,g1), Just h1, [x1,x2]) . ((f2,g2), Nothing. [y1,y2,y3])

Under Freelude this should happily compile (assuming all the bits are
categories themselves such as functions). Pairs of categories is a
category, Maybe of a category is a category, and a list of categories is a
category, and finally a triple of categories is a category. So composition
should be defined.

I'm no expert in the GHC type system (I don't really know any type theory
at all) but from what I observed injectivity allows the compiler to "dig"
all the way down this chain whilst still leaving some breadcrumbs to find
it's way back up. It's the two way equivalence that seems to help, GHC can
jump back and forth. I've tried this with non injective type families and
just making "inverse" type families but it just seems to end in tears and a
mass of type mismatches.

Although, I'd love people to look at the code, play with it and suggest
improvements.

Clinton

On Thu, Dec 14, 2017 at 12:33 PM, Anthony Clayden <
anthony_clay...@clear.net.nz> wrote:

>
> On Thu, 14 Dec 2017 at 1:55 PM, Clinton Mead 
> wrote:
>
>> Injective Type Families are at the core of my "Freelude" package, which
>> allows many more types to be defined as Categories, Functors, Applicatives
>> and Monads.
>>
>
> Cool!
>
>
>> What would also be helpful is if injectivity of type C as mentioned on
>> the page ...
>>
>
> OK. That's as per the type-level addition of Nats I mentioned. Did you
> consider using FunDeps instead of Injective Type Families?
>
> (I see lower down that page, type C is described as 'generalized'
> injectivity.)
>
> The variety of injectivity David F's o.p. talked about is orthogonal
> across types A, B, C. We might call it 'partial injectivity' as in partial
> function:
> * some values of the result determine (some of) the arguments; and/or
> * some values of the result with some values of some arguments determine
> other arguments; but
> * for some values of the result and/or some arguments, we can't determine
> the other arguments.
>
> You can kinda achieve that now using FunDeps with overlapping instances
> with UndecidableInstances exploiting GHC's bogus consistency check on
> FunDeps https://ghc.haskell.org/trac/ghc/ticket/10675#comment:15.
>
> Or maybe with (Closed) Type Families if you put a bogus catch-all at the
> end of the sequence of equations:
>
> > type family F a where
> >   ...
> >   F a = F a
>
> (But then it can't be injective, so you have to stitch it together with
> type classes and superclass equality constraints and who-knows-what.)
>
> None of it is sound or complete or rugged, in particular you can't risk
> orphan instances -- unless plug3: https://github.com/ghc-
> proposals/ghc-proposals/pull/56#issuecomment-351289722
>
> AntC
>
>
>> On Thu, Dec 14, 2017 at 11:29 AM, Anthony Clayden <
>> anthony_clay...@clear.net.nz> wrote:
>>
>>>
>>> On Tue, 12 Dec 2017 at 4:53 PM, Carter Schonwald <
>>> redir...@vodafone.co.nz> wrote:
>>>
 This was / perhaps still is one goal of injective type families too!
 I’m not sure why the current status is, but it’s defjnitely related

>>>
>>> Thanks Carter, yes this sort of injectiviy (semi-injectivity? partial
>>> injectivity?) is noted as future work in the 2015 paper. But I'm not seeing
>>> a lot of hollerin' for it(?) Or am I looking in the wrong places?
>>>
>>> The classic example is for Nats in length-indexed vectors: if we know
>>> the length of appending two vectors, and one of the arguments, infer the
>>> length of the other. (Oleg provided a solution using FunDeps more than a
>>> decade ago.) But GHC has special handling for type-level Nats (or rather
>>> Ints), hence no need to extend injectivity.
>>>
>>> Come to that, the original work that delivered Injective Type Families
>>> failed to find many use cases -- so the motivation was more
>>> keep-up-with-the-Jones's to provide equivalence to FunDeps.
>>>
>>> There were lots of newbie mistakes when Type Families first arrived, of
>>> thinking they were injective, because a TF application looks like a type
>>> constructor application `F Int` cp `T Int`. But perhaps that
>>> misunderstanding didn't represent genuine use cases?
>>>
>>> Is anybody out there using Injective Type Families currently? What for?
>>>
>>> AntC
>>>
>>>
 On Mon, Nov 20, 2017 at 3:44 AM Anthony Clayden <
 anthony_clay...@clear.net.nz> wrote:

> > On Thu Nov 16 01:31:55 UTC 2017, David Feuer wrote:
>
> (Moving to ghc-users, there's nothing particularly dev-y.)
>
> > Sometimes it woulld be useful to be able to reason
> backwards
> > about type families.
>
> Hi David, this is a well-known issue/bit of a sore.
> Discusse

Re: [was ghc-devs] Reasoning backwards with type families

2017-12-13 Thread David Feuer
I still haven't really digested what you've written, but I wish to pick a
nit (below)

On Nov 20, 2017 3:44 AM, "Anthony Clayden" 
wrote:

> On Thu Nov 16 01:31:55 UTC 2017, David Feuer wrote:

...

> For (&&), the obvious things you'd want are ...
>
> There's nothing inherently impossible about this sort of
reasoning.

No-ish but. It relies on knowing kind `Bool` is closed.
And GHC doesn't pay attention to that.
So you need to bring type family `Not`
into the reasoning; hence a SMT solver.


I don't think this is entirely correct. The fact that Bool is closed does
not seem relevant.  The key fact, I believe, is that (&&) is closed. Asking
GHC to reason like this about open type families smells much harder, but
maybe my sense of smell is off.
___
Glasgow-haskell-users mailing list
Glasgow-haskell-users@haskell.org
http://mail.haskell.org/cgi-bin/mailman/listinfo/glasgow-haskell-users


Re: [was ghc-devs] Reasoning backwards with type families

2017-12-13 Thread Anthony Clayden
On Thu, 14 Dec 2017 at 1:55 PM, Clinton Mead 
wrote:

> Injective Type Families are at the core of my "Freelude" package, which
> allows many more types to be defined as Categories, Functors, Applicatives
> and Monads.
>

Cool!


> What would also be helpful is if injectivity of type C as mentioned on the
> page ...
>

OK. That's as per the type-level addition of Nats I mentioned. Did you
consider using FunDeps instead of Injective Type Families?

(I see lower down that page, type C is described as 'generalized'
injectivity.)

The variety of injectivity David F's o.p. talked about is orthogonal across
types A, B, C. We might call it 'partial injectivity' as in partial
function:
* some values of the result determine (some of) the arguments; and/or
* some values of the result with some values of some arguments determine
other arguments; but
* for some values of the result and/or some arguments, we can't determine
the other arguments.

You can kinda achieve that now using FunDeps with overlapping instances
with UndecidableInstances exploiting GHC's bogus consistency check on
FunDeps https://ghc.haskell.org/trac/ghc/ticket/10675#comment:15.

Or maybe with (Closed) Type Families if you put a bogus catch-all at the
end of the sequence of equations:

> type family F a where
>   ...
>   F a = F a

(But then it can't be injective, so you have to stitch it together with
type classes and superclass equality constraints and who-knows-what.)

None of it is sound or complete or rugged, in particular you can't risk
orphan instances -- unless plug3:
https://github.com/ghc-proposals/ghc-proposals/pull/56#issuecomment-351289722

AntC


> On Thu, Dec 14, 2017 at 11:29 AM, Anthony Clayden <
> anthony_clay...@clear.net.nz> wrote:
>
>>
>> On Tue, 12 Dec 2017 at 4:53 PM, Carter Schonwald 
>> wrote:
>>
>>> This was / perhaps still is one goal of injective type families too!
>>> I’m not sure why the current status is, but it’s defjnitely related
>>>
>>
>> Thanks Carter, yes this sort of injectiviy (semi-injectivity? partial
>> injectivity?) is noted as future work in the 2015 paper. But I'm not seeing
>> a lot of hollerin' for it(?) Or am I looking in the wrong places?
>>
>> The classic example is for Nats in length-indexed vectors: if we know the
>> length of appending two vectors, and one of the arguments, infer the length
>> of the other. (Oleg provided a solution using FunDeps more than a decade
>> ago.) But GHC has special handling for type-level Nats (or rather Ints),
>> hence no need to extend injectivity.
>>
>> Come to that, the original work that delivered Injective Type Families
>> failed to find many use cases -- so the motivation was more
>> keep-up-with-the-Jones's to provide equivalence to FunDeps.
>>
>> There were lots of newbie mistakes when Type Families first arrived, of
>> thinking they were injective, because a TF application looks like a type
>> constructor application `F Int` cp `T Int`. But perhaps that
>> misunderstanding didn't represent genuine use cases?
>>
>> Is anybody out there using Injective Type Families currently? What for?
>>
>> AntC
>>
>>
>>> On Mon, Nov 20, 2017 at 3:44 AM Anthony Clayden <
>>> anthony_clay...@clear.net.nz> wrote:
>>>
 > On Thu Nov 16 01:31:55 UTC 2017, David Feuer wrote:

 (Moving to ghc-users, there's nothing particularly dev-y.)

 > Sometimes it woulld be useful to be able to reason
 backwards
 > about type families.

 Hi David, this is a well-known issue/bit of a sore.
 Discussed much in the debate between type families
 compared to FunDeps.

 > For example, we have
 >
 > type family a && b where
 >   'False && b  = 'False
 >   'True  && b  = b
 >   a  && 'False = 'False
 >   a  && 'True  = a
 >   a  && a  = a

 > ... if we know something about the *result*,
 > GHC doesn't give us any way to learn anything about the
 arguments.

 You can achieve the improvement you want today.

 You'll probably find Oleg has a solution
 With FunDeps and superclass constraints, it'll go like this

 class (OnResult r a b, OnResult r b a) => And a b r | a b ->
 r

 instance And 'False b 'False
 -- etc, as you'd expect following the tf equations
 -- the instances are overlapping but confluent

 class OnResult r a b | r a -> b
 instance OnResult 'True a 'True
 instance OnResult 'False 'True 'False

 You could equally make `OnResult` a type family.

 If you can trace backwards to where `&&` is used,
 you might be able to add suitable constraints there.

 So there's a couple of futures:
 * typechecker plugins, using an SMT solver
 * injective type families
the next phase is supposed to allow

 type family a && b = r | r a -> b, r b -> a where ...

 That will help with some type families
 (such as addition of Nats),
 plug1

 https://github.com

Re: [was ghc-devs] Reasoning backwards with type families

2017-12-13 Thread Clinton Mead
Injective Type Families are at the core of my "Freelude" (
https://hackage.haskell.org/package/freelude) package, which allows many
more types to be defined as Categories, Functors, Applicatives and Monads.

For example you can define a tuple of categories as a category and then:

(f1, f2) . (g1 . g2) = (f1 . g1, f2 . g2)

as one would expect.

Also one can define symmetric versions on tuples "fmap", for example:

fmap (*2) (3,4,5) = (6,8,10)

The library is currently basically a proof of concept but it wouldn't be
possible without Injective Type Families.

What would also be helpful is if injectivity of type C as mentioned on the
page (https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies) but
unfortunately this is currently not implemented so I've worked around this
where possible (this is largely the reason why the library splits
"Functors" and "ExoFunctors").

Cheers,

Clinton

On Thu, Dec 14, 2017 at 11:29 AM, Anthony Clayden <
anthony_clay...@clear.net.nz> wrote:

>
> On Tue, 12 Dec 2017 at 4:53 PM, Carter Schonwald 
> wrote:
>
>> This was / perhaps still is one goal of injective type families too!  I’m
>> not sure why the current status is, but it’s defjnitely related
>>
>
> Thanks Carter, yes this sort of injectiviy (semi-injectivity? partial
> injectivity?) is noted as future work in the 2015 paper. But I'm not seeing
> a lot of hollerin' for it(?) Or am I looking in the wrong places?
>
> The classic example is for Nats in length-indexed vectors: if we know the
> length of appending two vectors, and one of the arguments, infer the length
> of the other. (Oleg provided a solution using FunDeps more than a decade
> ago.) But GHC has special handling for type-level Nats (or rather Ints),
> hence no need to extend injectivity.
>
> Come to that, the original work that delivered Injective Type Families
> failed to find many use cases -- so the motivation was more
> keep-up-with-the-Jones's to provide equivalence to FunDeps.
>
> There were lots of newbie mistakes when Type Families first arrived, of
> thinking they were injective, because a TF application looks like a type
> constructor application `F Int` cp `T Int`. But perhaps that
> misunderstanding didn't represent genuine use cases?
>
> Is anybody out there using Injective Type Families currently? What for?
>
> AntC
>
>
>> On Mon, Nov 20, 2017 at 3:44 AM Anthony Clayden <
>> anthony_clay...@clear.net.nz> wrote:
>>
>>> > On Thu Nov 16 01:31:55 UTC 2017, David Feuer wrote:
>>>
>>> (Moving to ghc-users, there's nothing particularly dev-y.)
>>>
>>> > Sometimes it woulld be useful to be able to reason
>>> backwards
>>> > about type families.
>>>
>>> Hi David, this is a well-known issue/bit of a sore.
>>> Discussed much in the debate between type families
>>> compared to FunDeps.
>>>
>>> > For example, we have
>>> >
>>> > type family a && b where
>>> >   'False && b  = 'False
>>> >   'True  && b  = b
>>> >   a  && 'False = 'False
>>> >   a  && 'True  = a
>>> >   a  && a  = a
>>>
>>> > ... if we know something about the *result*,
>>> > GHC doesn't give us any way to learn anything about the
>>> arguments.
>>>
>>> You can achieve the improvement you want today.
>>>
>>> You'll probably find Oleg has a solution
>>> With FunDeps and superclass constraints, it'll go like this
>>>
>>> class (OnResult r a b, OnResult r b a) => And a b r | a b ->
>>> r
>>>
>>> instance And 'False b 'False
>>> -- etc, as you'd expect following the tf equations
>>> -- the instances are overlapping but confluent
>>>
>>> class OnResult r a b | r a -> b
>>> instance OnResult 'True a 'True
>>> instance OnResult 'False 'True 'False
>>>
>>> You could equally make `OnResult` a type family.
>>>
>>> If you can trace backwards to where `&&` is used,
>>> you might be able to add suitable constraints there.
>>>
>>> So there's a couple of futures:
>>> * typechecker plugins, using an SMT solver
>>> * injective type families
>>>the next phase is supposed to allow
>>>
>>> type family a && b = r | r a -> b, r b -> a where ...
>>>
>>> That will help with some type families
>>> (such as addition of Nats),
>>> plug1
>>> https://github.com/AntC2/ghc-proposals/blob/instance-
>>> apartness-guards/proposals/-instance-apartness-
>>> guards.rst#injective-type-families
>>>
>>> but I don't see it helping here.
>>> plug2 (this example)
>>> https://github.com/AntC2/ghc-proposals/blob/instance-
>>> apartness-guards/proposals/-instance-apartness-
>>> guards.rst#type-family-coincident-overlap
>>>
>>> Because (for example) if you unify the first two equations,
>>> (that is, looking for coincident overlap)
>>>
>>> 'False && 'False = 'False
>>> 'True && 'False = 'False
>>>
>>> That's inconsistent on dependency ` r b -> a`.
>>>
>>> And you can't fix it by re-ordering the closed equations.
>>>
>>> > For (&&), the obvious things you'd want are ...
>>> >
>>> > There's nothing inherently impossible about this sort of
>>> reasoning.
>>>
>>> No-ish but. It relies on knowing 

Re: [was ghc-devs] Reasoning backwards with type families

2017-12-13 Thread Anthony Clayden
On Tue, 12 Dec 2017 at 4:53 PM, Carter Schonwald 
wrote:

> This was / perhaps still is one goal of injective type families too!  I’m
> not sure why the current status is, but it’s defjnitely related
>

Thanks Carter, yes this sort of injectiviy (semi-injectivity? partial
injectivity?) is noted as future work in the 2015 paper. But I'm not seeing
a lot of hollerin' for it(?) Or am I looking in the wrong places?

The classic example is for Nats in length-indexed vectors: if we know the
length of appending two vectors, and one of the arguments, infer the length
of the other. (Oleg provided a solution using FunDeps more than a decade
ago.) But GHC has special handling for type-level Nats (or rather Ints),
hence no need to extend injectivity.

Come to that, the original work that delivered Injective Type Families
failed to find many use cases -- so the motivation was more
keep-up-with-the-Jones's to provide equivalence to FunDeps.

There were lots of newbie mistakes when Type Families first arrived, of
thinking they were injective, because a TF application looks like a type
constructor application `F Int` cp `T Int`. But perhaps that
misunderstanding didn't represent genuine use cases?

Is anybody out there using Injective Type Families currently? What for?

AntC


> On Mon, Nov 20, 2017 at 3:44 AM Anthony Clayden <
> anthony_clay...@clear.net.nz> wrote:
>
>> > On Thu Nov 16 01:31:55 UTC 2017, David Feuer wrote:
>>
>> (Moving to ghc-users, there's nothing particularly dev-y.)
>>
>> > Sometimes it woulld be useful to be able to reason
>> backwards
>> > about type families.
>>
>> Hi David, this is a well-known issue/bit of a sore.
>> Discussed much in the debate between type families
>> compared to FunDeps.
>>
>> > For example, we have
>> >
>> > type family a && b where
>> >   'False && b  = 'False
>> >   'True  && b  = b
>> >   a  && 'False = 'False
>> >   a  && 'True  = a
>> >   a  && a  = a
>>
>> > ... if we know something about the *result*,
>> > GHC doesn't give us any way to learn anything about the
>> arguments.
>>
>> You can achieve the improvement you want today.
>>
>> You'll probably find Oleg has a solution
>> With FunDeps and superclass constraints, it'll go like this
>>
>> class (OnResult r a b, OnResult r b a) => And a b r | a b ->
>> r
>>
>> instance And 'False b 'False
>> -- etc, as you'd expect following the tf equations
>> -- the instances are overlapping but confluent
>>
>> class OnResult r a b | r a -> b
>> instance OnResult 'True a 'True
>> instance OnResult 'False 'True 'False
>>
>> You could equally make `OnResult` a type family.
>>
>> If you can trace backwards to where `&&` is used,
>> you might be able to add suitable constraints there.
>>
>> So there's a couple of futures:
>> * typechecker plugins, using an SMT solver
>> * injective type families
>>the next phase is supposed to allow
>>
>> type family a && b = r | r a -> b, r b -> a where ...
>>
>> That will help with some type families
>> (such as addition of Nats),
>> plug1
>>
>> https://github.com/AntC2/ghc-proposals/blob/instance-apartness-guards/proposals/-instance-apartness-guards.rst#injective-type-families
>>
>> but I don't see it helping here.
>> plug2 (this example)
>>
>> https://github.com/AntC2/ghc-proposals/blob/instance-apartness-guards/proposals/-instance-apartness-guards.rst#type-family-coincident-overlap
>>
>> Because (for example) if you unify the first two equations,
>> (that is, looking for coincident overlap)
>>
>> 'False && 'False = 'False
>> 'True && 'False = 'False
>>
>> That's inconsistent on dependency ` r b -> a`.
>>
>> And you can't fix it by re-ordering the closed equations.
>>
>> > For (&&), the obvious things you'd want are ...
>> >
>> > There's nothing inherently impossible about this sort of
>> reasoning.
>>
>> No-ish but. It relies on knowing kind `Bool` is closed.
>> And GHC doesn't pay attention to that.
>> So you need to bring type family `Not`
>> into the reasoning; hence a SMT solver.
>>
>> > ...
>> > I wouldn't necessarily expect GHC
>> > to be able to work something like this out on its own.
>>
>> That's a relief ;-)
>>
>> > But it seems like there should be some way to allow the
>> user
>> > to guide it to a proof.
>>
>> Yes, an SMT solver with a model for kind `Bool`.
>> (And a lot of hard work to teach it, by someone.)
>>
>> AntC
>> ___
>> Glasgow-haskell-users mailing list
>> Glasgow-haskell-users@haskell.org
>> http://mail.haskell.org/cgi-bin/mailman/listinfo/glasgow-haskell-users
>>
>
___
Glasgow-haskell-users mailing list
Glasgow-haskell-users@haskell.org
http://mail.haskell.org/cgi-bin/mailman/listinfo/glasgow-haskell-users