Re: [gmx-users] large free energy difference of mutating ATP to GTP in solution using FEP method in Gromacs-4.6.5

2014-05-24 Thread Michael Shirts
There are many ways for free energy calculations to go wrong. Look at
http://www.alchemistry.org for some discussions.

One thing I noticed (I didn't have a chance to look at everything) -
you only talk about one simulation. When doing classical simulations,
then you can't just mutate atoms, because classical simulations
neglect quantum mechanical terms. You can only look at differences in
alchemical simulations.  For example, you can look at the differences
between solvation free energies by performing the mutation in both
water and vacuum.  You have to think VERY carefully about the
thermodynamic end states that you are using.

On Sat, May 24, 2014 at 1:18 AM, dbaogen dbao...@gmail.com wrote:
 Dear all,

I want to calculate the free energy difference of mutating ATP to 
 GTP in solution using FEP method. Firstly, the hybrid topology and structure 
 files for A (ATP) and B (GTP) state using dummy atoms were constructed. 
 Secondly,  the system is running for 10 ns to reach an equilibrium state.  
 And then the structure at 10 ns is as the starting structure to carry out FEP 
 calculation. In the course of FEP, the coulomb interaction was firstly 
 changed, and then the VDW interactions. Total 32 lambda points are set in the 
 mdp file shown in the following:
 integrator   = sd
 nsteps   = 10
 dt  = 0.002
 nstenergy= 1000
 nstlog   = 5000
 nstcalcenergy= 100
 nstcomm  = 1
 cutoff-scheme= group
 rlist= 1.2
 dispcorr = EnerPres
 vdw-type = switch
 ;cut-off lengths
 rvdw = 1.1
 rvdw-switch  = 1
 ; Coulomb interactions
 coulombtype  = pme
 rcoulomb = 1.2
 fourierspacing   = 0.12
 ; Constraints
 constraints  = all-bonds
 ; set temperature to 310K
 tcoupl   = v-rescale
 tc-grps  = system
 tau-t= 1.0
 ref-t= 310
 ; pressure control
 pcoupl  = Parrinello-Rahman
 ref-p= 1
 compressibility= 4.5e-5
 tau-p= 0.5

 ; and set the free energy parameters
 free-energy  = yes
 sc-power = 1
 sc-sigma = 0.3
 sc-alpha = 0.5
 sc-coul  = no
 sc-r-power   = 6
 ; we still want the molecule to interact with itself at lambda=0
 couple-intramol  = no
 couple-lambda0   = vdw-q
 couple-lambda1   = vdw-q
 ; $LAMBDA$ changed from 0 to 32
 init-lambda-state= $LAMBDA$
 nstdhdl  = 100
 calc-lambda-neighbors= 1
 fep-lambdas =  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.05 0.1 
 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 
 1.0
 ;change electrostatic and then LJ interaction
 coul-lambdas = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.00 1.00 1.00 1.0 
 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 
 1.0
 vdw-lambdas  = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.05 0.1 
 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 
 1.0

 atom part of hybrid topology file is :
 [ atoms ]
 ;   nr   type  resnr residue  atom   cgnr charge   mass  typeB
 chargeB
  1 O3  1RAGO1G  1   -0.95260  16.00
  2  P  1RAG PG  21.26500  31.00
  3 O3  1RAGO2G  3   -0.95260  16.00
  4 O3  1RAGO3G  4   -0.95260  16.00
  5 OS  1RAGO3B  5   -0.53220  16.00
  6  P  1RAG PB  61.38520  31.00
  7 O2  1RAGO1B  7   -0.88940  16.00
  8 O2  1RAGO2B  8   -0.88940  16.00
  9 OS  1RAGO3A  9   -0.56890  16.00
 10  P  1RAG PA 101.25320  31.00
 11 O2  1RAGO1A 11   -0.87990  16.00
 12 O2  1RAGO2A 12   -0.87990  16.00
 13 OS  1RAGO5* 13   -0.59870  16.00
 14 CT  1RAGC5* 140.05580  12.00
 15 H1  1RAGH50 150.06790   1.008000
 16 H1  1RAGH51 160.06790   1.008000
 17 CT  1RAGC4* 170.10650  12.00
 18 H1  1RAGH40 180.11740   1.008000
 19 OS  1RAGO4* 19   -0.35480  16.00
 20 CT  1RAGC1* 200.03940  12.00   CT 
 0.01910  12.00
 21 H2  1RAGH10 210.20070   1.008000   H2 
 0.20060   1.008000
 22 N*  1RAG N9 22   -0.02510  

[gmx-users] large free energy difference of mutating ATP to GTP in solution using FEP method in Gromacs-4.6.5

2014-05-23 Thread dbaogen
Dear all,

   I want to calculate the free energy difference of mutating ATP to 
GTP in solution using FEP method. Firstly, the hybrid topology and structure 
files for A (ATP) and B (GTP) state using dummy atoms were constructed. 
Secondly,  the system is running for 10 ns to reach an equilibrium state.  And 
then the structure at 10 ns is as the starting structure to carry out FEP 
calculation. In the course of FEP, the coulomb interaction was firstly changed, 
and then the VDW interactions. Total 32 lambda points are set in the mdp file 
shown in the following:
integrator   = sd
nsteps   = 10
dt  = 0.002
nstenergy= 1000
nstlog   = 5000
nstcalcenergy= 100
nstcomm  = 1
cutoff-scheme= group
rlist= 1.2
dispcorr = EnerPres
vdw-type = switch
;cut-off lengths
rvdw = 1.1
rvdw-switch  = 1
; Coulomb interactions 
coulombtype  = pme
rcoulomb = 1.2
fourierspacing   = 0.12
; Constraints
constraints  = all-bonds
; set temperature to 310K
tcoupl   = v-rescale
tc-grps  = system
tau-t= 1.0 
ref-t= 310 
; pressure control
pcoupl  = Parrinello-Rahman
ref-p= 1
compressibility= 4.5e-5
tau-p= 0.5 

; and set the free energy parameters
free-energy  = yes 
sc-power = 1
sc-sigma = 0.3 
sc-alpha = 0.5
sc-coul  = no 
sc-r-power   = 6
; we still want the molecule to interact with itself at lambda=0
couple-intramol  = no  
couple-lambda0   = vdw-q
couple-lambda1   = vdw-q
; $LAMBDA$ changed from 0 to 32
init-lambda-state= $LAMBDA$
nstdhdl  = 100
calc-lambda-neighbors= 1
fep-lambdas =  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.05 0.1 
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
;change electrostatic and then LJ interaction
coul-lambdas = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.00 1.00 1.00 1.0 
1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0 1.00 1.0
vdw-lambdas  = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.05 0.1 
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

atom part of hybrid topology file is :
[ atoms ]
;   nr   type  resnr residue  atom   cgnr charge   mass  typeB
chargeB
 1 O3  1RAGO1G  1   -0.95260  16.00
 2  P  1RAG PG  21.26500  31.00
 3 O3  1RAGO2G  3   -0.95260  16.00
 4 O3  1RAGO3G  4   -0.95260  16.00
 5 OS  1RAGO3B  5   -0.53220  16.00
 6  P  1RAG PB  61.38520  31.00
 7 O2  1RAGO1B  7   -0.88940  16.00
 8 O2  1RAGO2B  8   -0.88940  16.00
 9 OS  1RAGO3A  9   -0.56890  16.00
10  P  1RAG PA 101.25320  31.00
11 O2  1RAGO1A 11   -0.87990  16.00
12 O2  1RAGO2A 12   -0.87990  16.00
13 OS  1RAGO5* 13   -0.59870  16.00
14 CT  1RAGC5* 140.05580  12.00
15 H1  1RAGH50 150.06790   1.008000
16 H1  1RAGH51 160.06790   1.008000
17 CT  1RAGC4* 170.10650  12.00
18 H1  1RAGH40 180.11740   1.008000
19 OS  1RAGO4* 19   -0.35480  16.00
20 CT  1RAGC1* 200.03940  12.00   CT 
0.01910  12.00
21 H2  1RAGH10 210.20070   1.008000   H2 
0.20060   1.008000
22 N*  1RAG N9 22   -0.02510  14.00   N* 
0.04920  14.00
23 CK  1RAG C8 230.20060  12.00   CK 
0.13740  12.00
24 H5  1RAGH80 240.15530   1.008000   H5 
0.16400   1.008000
25 NB  1RAG N7 25   -0.60730  14.00   NB
-0.57090  14.00
26 CB  1RAG C5 260.05150  12.00   CB 
0.17440  12.00
27 CA  1RAG C6 270.70090  12.00C 
0.47700  12.00
28 N2  1RAG N6 28   -0.90190  14.00O 
-0.55970  16.00
29  H  1RAGH60 290.41150   1.008000  DUM_1   
0.00   1.0080
30  H  1RAGH61 300.41150   1.008000