[ https://issues.apache.org/jira/browse/HIVE-8765?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14949780#comment-14949780 ]
Pengcheng Xiong commented on HIVE-8765: --------------------------------------- Close the issue because (1) The correlation between the join column and the predicate column is unknown after discussing with [~rhbutani] and (2) the current plan to join data_dim will generate 405000 rows as intermediate result and the other plan to join item first will generate 726850 rows. The accumulated cost is even higher. > TPC-DS Q21 : Incorrect join order makes query run slower (Not scaling > selectivity by NDV) > ------------------------------------------------------------------------------------------ > > Key: HIVE-8765 > URL: https://issues.apache.org/jira/browse/HIVE-8765 > Project: Hive > Issue Type: Bug > Components: CBO > Affects Versions: 0.14.0 > Reporter: Mostafa Mokhtar > Assignee: Laljo John Pullokkaran > > CBO joins with date_dim first instead of item where item is the more > selective join. > Query > {code} > select * > from(select w_warehouse_name > ,i_item_id > ,sum(case when (cast(d_date as date) < cast ('1998-04-08' as > date)) > then inv_quantity_on_hand > else 0 end) as inv_before > ,sum(case when (cast(d_date as date) >= cast ('1998-04-08' as > date)) > then inv_quantity_on_hand > else 0 end) as inv_after > from inventory > ,warehouse > ,item > ,date_dim > where i_current_price between 0.99 and 1.49 > and item.i_item_sk = inventory.inv_item_sk > and inventory.inv_warehouse_sk = warehouse.w_warehouse_sk > and inventory.inv_date_sk = date_dim.d_date_sk > and d_date between '1998-03-09' and '1998-05-07' > group by w_warehouse_name, i_item_id) x > where (case when inv_before > 0 > then inv_after / inv_before > else null > end) between 2.0/3.0 and 3.0/2.0 > order by w_warehouse_name > ,i_item_id > limit 100 > {code} > Logical Plan > {code} > 2014-11-06 16:58:32,041 DEBUG [main]: parse.SemanticAnalyzer > (SemanticAnalyzer.java:apply(12631)) - Plan After Join Reordering: > HiveSortRel(fetch=[100]): rowcount = 1.0, cumulative cost = > {1.627879384609158E9 rows, 2.0 cpu, 0.0 io}, id = 12521 > HiveSortRel(sort0=[$0], sort1=[$1], dir0=[ASC], dir1=[ASC]): rowcount = > 1.0, cumulative cost = {1.627879368609158E9 rows, 1.0 cpu, 0.0 io}, id = 12519 > HiveProjectRel(w_warehouse_name=[$0], i_item_id=[$1], inv_before=[$2], > inv_after=[$3]): rowcount = 1.0, cumulative cost = {1.627879352609158E9 rows, > 0.0 cpu, 0.0 io}, id = 12517 > HiveFilterRel(condition=[between(false, when(>($2, 0), > /(CAST($3):DOUBLE, CAST($2):DOUBLE), null), /(2E0, 3E0), /(3E0, 2E0))]): > rowcount = 1.0, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 > io}, id = 12515 > HiveAggregateRel(group=[{0, 1}], agg#0=[sum($2)], agg#1=[sum($3)]): > rowcount = 1.7688372892644288, cumulative cost = {1.627879352609158E9 rows, > 0.0 cpu, 0.0 io}, id = 12513 > HiveProjectRel($f0=[$5], $f1=[$7], $f2=[when(<(CAST($10):DATE, > CAST('1998-04-08'):DATE), $2, 0)], $f3=[when(>=(CAST($10):DATE, > CAST('1998-04-08'):DATE), $2, 0)]): rowcount = 1.8477987480495097, cumulative > cost = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12511 > HiveProjectRel(inv_item_sk=[$2], inv_warehouse_sk=[$3], > inv_quantity_on_hand=[$4], inv_date_sk=[$5], w_warehouse_sk=[$0], > w_warehouse_name=[$1], i_item_sk=[$8], i_item_id=[$9], i_current_price=[$10], > d_date_sk=[$6], d_date=[$7]): rowcount = 1.8477987480495097, cumulative cost > = {1.627879352609158E9 rows, 0.0 cpu, 0.0 io}, id = 12577 > HiveJoinRel(condition=[=($3, $0)], joinType=[inner]): rowcount > = 1.8477987480495097, cumulative cost = {1.627879352609158E9 rows, 0.0 cpu, > 0.0 io}, id = 12575 > HiveProjectRel(w_warehouse_sk=[$0], w_warehouse_name=[$2]): > rowcount = 27.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12463 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.warehouse]]): > rowcount = 27.0, cumulative cost = {0}, id = 12287 > HiveJoinRel(condition=[=($6, $0)], joinType=[inner]): > rowcount = 1.8477987480495097, cumulative cost = {1.6278793237613592E9 rows, > 0.0 cpu, 0.0 io}, id = 12573 > HiveJoinRel(condition=[=($3, $4)], joinType=[inner]): > rowcount = 22284.45290147709, cumulative cost = {1.627857001E9 rows, 0.0 cpu, > 0.0 io}, id = 12534 > HiveProjectRel(inv_item_sk=[$0], inv_warehouse_sk=[$1], > inv_quantity_on_hand=[$2], inv_date_sk=[$3]): rowcount = 1.627857E9, > cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12460 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.inventory]]): > rowcount = 1.627857E9, cumulative cost = {0}, id = 12284 > HiveProjectRel(d_date_sk=[$0], d_date=[$2]): rowcount = > 1.0, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12507 > HiveFilterRel(condition=[between(false, $2, > '1998-03-09', '1998-05-07')]): rowcount = 1.0, cumulative cost = {0.0 rows, > 0.0 cpu, 0.0 io}, id = 12505 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.date_dim]]): > rowcount = 73049.0, cumulative cost = {0}, id = 12286 > HiveProjectRel(i_item_sk=[$0], i_item_id=[$1], > i_current_price=[$5]): rowcount = 38.308457711442784, cumulative cost = {0.0 > rows, 0.0 cpu, 0.0 io}, id = 12501 > HiveFilterRel(condition=[between(false, $5, > 9.8999999999999999111E-1, 1.4899999999999999911E0)]): rowcount = > 38.308457711442784, cumulative cost = {0.0 rows, 0.0 cpu, 0.0 io}, id = 12499 > > HiveTableScanRel(table=[[tpcds_bin_partitioned_orc_30000.item]]): rowcount = > 462000.0, cumulative cost = {0}, id = 12285 > {code} > Physical plan > {code} > STAGE DEPENDENCIES: > Stage-1 is a root stage > Stage-0 depends on stages: Stage-1 > STAGE PLANS: > Stage: Stage-1 > Tez > Edges: > Map 3 <- Map 1 (BROADCAST_EDGE), Map 2 (BROADCAST_EDGE), Map 6 > (BROADCAST_EDGE) > Reducer 4 <- Map 3 (SIMPLE_EDGE) > Reducer 5 <- Reducer 4 (SIMPLE_EDGE) > DagName: mmokhtar_20141104001212_4ebd83eb-0b1a-4375-aa32-b6455db0b8f9:1 > Vertices: > Map 1 > Map Operator Tree: > TableScan > alias: warehouse > filterExpr: w_warehouse_sk is not null (type: boolean) > Statistics: Num rows: 27 Data size: 27802 Basic stats: > COMPLETE Column stats: COMPLETE > Filter Operator > predicate: w_warehouse_sk is not null (type: boolean) > Statistics: Num rows: 27 Data size: 2808 Basic stats: > COMPLETE Column stats: COMPLETE > Select Operator > expressions: w_warehouse_sk (type: int), > w_warehouse_name (type: string) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 27 Data size: 2808 Basic stats: > COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 27 Data size: 2808 Basic stats: > COMPLETE Column stats: COMPLETE > value expressions: _col1 (type: string) > Execution mode: vectorized > Map 2 > Map Operator Tree: > TableScan > alias: item > filterExpr: (i_current_price BETWEEN 0.99 AND 1.49 and > i_item_sk is not null) (type: boolean) > Statistics: Num rows: 462000 Data size: 663862160 Basic > stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: (i_current_price BETWEEN 0.99 AND 1.49 and > i_item_sk is not null) (type: boolean) > Statistics: Num rows: 231000 Data size: 24945664 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: i_item_sk (type: int), i_item_id (type: > string) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 231000 Data size: 24024000 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 231000 Data size: 24024000 > Basic stats: COMPLETE Column stats: COMPLETE > value expressions: _col1 (type: string) > Execution mode: vectorized > Map 3 > Map Operator Tree: > TableScan > alias: inventory > filterExpr: (inv_item_sk is not null and inv_warehouse_sk > is not null) (type: boolean) > Statistics: Num rows: 1627857000 Data size: 19208695084 > Basic stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: (inv_item_sk is not null and inv_warehouse_sk > is not null) (type: boolean) > Statistics: Num rows: 1627857000 Data size: 25720123084 > Basic stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: inv_item_sk (type: int), inv_warehouse_sk > (type: int), inv_quantity_on_hand (type: int), inv_date_sk (type: int) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1627857000 Data size: 25720123084 > Basic stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col0} {_col1} {_col2} > 1 {_col1} > keys: > 0 _col3 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col0, _col1, _col2, _col5 > input vertices: > 1 Map 6 > Statistics: Num rows: 1820114157 Data size: > 185651644014 Basic stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col1} {_col2} {_col5} > 1 {_col1} > keys: > 0 _col0 (type: int) > 1 _col0 (type: int) > outputColumnNames: _col1, _col2, _col5, _col7 > input vertices: > 1 Map 2 > Statistics: Num rows: 1913285356 Data size: > 378830500488 Basic stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: _col1 (type: int), _col2 (type: > int), _col5 (type: string), _col7 (type: string) > outputColumnNames: _col1, _col2, _col5, _col7 > Statistics: Num rows: 1913285356 Data size: > 378830500488 Basic stats: COMPLETE Column stats: COMPLETE > Map Join Operator > condition map: > Inner Join 0 to 1 > condition expressions: > 0 {_col1} > 1 {_col2} {_col5} {_col7} > keys: > 0 _col0 (type: int) > 1 _col1 (type: int) > outputColumnNames: _col1, _col4, _col7, _col9 > input vertices: > 0 Map 1 > Statistics: Num rows: 2348122936 Data size: > 699740634928 Basic stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: _col1 (type: string), _col9 > (type: string), CASE WHEN ((CAST( _col7 AS DATE) < 1998-04-08)) THEN (_col4) > ELSE (0) END (type: int), CASE WHEN ((CAST( _col7 AS DATE) >= 1998-04-08)) > THEN (_col4) ELSE (0) END (type: int) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 2348122936 Data size: > 699740634928 Basic stats: COMPLETE Column stats: COMPLETE > Group By Operator > aggregations: sum(_col2), sum(_col3) > keys: _col0 (type: string), _col1 (type: > string) > mode: hash > outputColumnNames: _col0, _col1, _col2, > _col3 > Statistics: Num rows: 1174061468 Data size: > 253597277088 Basic stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: string), > _col1 (type: string) > sort order: ++ > Map-reduce partition columns: _col0 > (type: string), _col1 (type: string) > Statistics: Num rows: 1174061468 Data > size: 253597277088 Basic stats: COMPLETE Column stats: COMPLETE > value expressions: _col2 (type: bigint), > _col3 (type: bigint) > Map 6 > Map Operator Tree: > TableScan > alias: date_dim > filterExpr: (d_date BETWEEN '1998-03-09' AND '1998-05-07' > and d_date_sk is not null) (type: boolean) > Statistics: Num rows: 73049 Data size: 81741831 Basic > stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: (d_date BETWEEN '1998-03-09' AND '1998-05-07' > and d_date_sk is not null) (type: boolean) > Statistics: Num rows: 36524 Data size: 3579352 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: d_date_sk (type: int), d_date (type: > string) > outputColumnNames: _col0, _col1 > Statistics: Num rows: 36524 Data size: 3579352 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: int) > sort order: + > Map-reduce partition columns: _col0 (type: int) > Statistics: Num rows: 36524 Data size: 3579352 Basic > stats: COMPLETE Column stats: COMPLETE > value expressions: _col1 (type: string) > Select Operator > expressions: _col0 (type: int) > outputColumnNames: _col0 > Statistics: Num rows: 36524 Data size: 3579352 Basic > stats: COMPLETE Column stats: COMPLETE > Group By Operator > keys: _col0 (type: int) > mode: hash > outputColumnNames: _col0 > Statistics: Num rows: 36524 Data size: 3579352 > Basic stats: COMPLETE Column stats: COMPLETE > Dynamic Partitioning Event Operator > Target Input: inventory > Partition key expr: inv_date_sk > Statistics: Num rows: 36524 Data size: 3579352 > Basic stats: COMPLETE Column stats: COMPLETE > Target column: inv_date_sk > Target Vertex: Map 3 > Execution mode: vectorized > Reducer 4 > Reduce Operator Tree: > Group By Operator > aggregations: sum(VALUE._col0), sum(VALUE._col1) > keys: KEY._col0 (type: string), KEY._col1 (type: string) > mode: mergepartial > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 3263127 Data size: 704835432 Basic > stats: COMPLETE Column stats: COMPLETE > Filter Operator > predicate: CASE WHEN ((_col2 > 0)) THEN > ((UDFToDouble(_col3) / UDFToDouble(_col2))) ELSE (null) END BETWEEN > 0.6666666666666666 AND 1.5 (type: boolean) > Statistics: Num rows: 1631563 Data size: 352417608 Basic > stats: COMPLETE Column stats: COMPLETE > Select Operator > expressions: _col0 (type: string), _col1 (type: string), > _col2 (type: bigint), _col3 (type: bigint) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1631563 Data size: 352417608 Basic > stats: COMPLETE Column stats: COMPLETE > Reduce Output Operator > key expressions: _col0 (type: string), _col1 (type: > string) > sort order: ++ > Statistics: Num rows: 1631563 Data size: 352417608 > Basic stats: COMPLETE Column stats: COMPLETE > TopN Hash Memory Usage: 0.04 > value expressions: _col2 (type: bigint), _col3 (type: > bigint) > Reducer 5 > Reduce Operator Tree: > Select Operator > expressions: KEY.reducesinkkey0 (type: string), > KEY.reducesinkkey1 (type: string), VALUE._col0 (type: bigint), VALUE._col1 > (type: bigint) > outputColumnNames: _col0, _col1, _col2, _col3 > Statistics: Num rows: 1631563 Data size: 352417608 Basic > stats: COMPLETE Column stats: COMPLETE > Limit > Number of rows: 100 > Statistics: Num rows: 100 Data size: 21600 Basic stats: > COMPLETE Column stats: COMPLETE > File Output Operator > compressed: false > Statistics: Num rows: 100 Data size: 21600 Basic stats: > COMPLETE Column stats: COMPLETE > table: > input format: org.apache.hadoop.mapred.TextInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat > serde: > org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe > Execution mode: vectorized > Stage: Stage-0 > Fetch Operator > limit: 100 > Processor Tree: > ListSink > Time taken: 6.142 seconds, Fetched: 205 row(s) > {code} -- This message was sent by Atlassian JIRA (v6.3.4#6332)