[jira] [Updated] (MADLIB-1490) Can You add XGBOOST?

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1490?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1490:
-
Fix Version/s: v1.20.0

> Can You add XGBOOST?
> 
>
> Key: MADLIB-1490
> URL: https://issues.apache.org/jira/browse/MADLIB-1490
> Project: Apache MADlib
>  Issue Type: Request
>Reporter: Ameer Ul Islam
>Priority: Major
> Fix For: v1.20.0
>
>
> Can You add XGBOOST module?



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1498) dbconnector interface

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1498?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1498:
-
Fix Version/s: v1.20.0

> dbconnector interface
> -
>
> Key: MADLIB-1498
> URL: https://issues.apache.org/jira/browse/MADLIB-1498
> Project: Apache MADlib
>  Issue Type: Question
>  Components: DB Abstraction Layer, Documentation
>Reporter: Sabina Dayanova
>Priority: Major
> Fix For: v1.20.0
>
>
> Dear MADlib contributors!
> My name is Sabina, and I am currently working on integrating MADlib library 
> into another DBMS - 
> [ClickHouse|[https://clickhouse.com|https://clickhouse.com/]] I am trying to 
> understand the dbconnector interface, so that I can adapt it to the DBMS that 
> I am working with. Unfortunately, I am having a hard time doing that, since 
> there is no explanation of what the dbconnector.hpp file should exactly do. 
> I was wondering if you could give me some helpful information about it.
> Thanks!
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1503) Add multi column support for PageRank

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1503?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1503:
-
Fix Version/s: v1.20.0

> Add multi column support for PageRank
> -
>
> Key: MADLIB-1503
> URL: https://issues.apache.org/jira/browse/MADLIB-1503
> Project: Apache MADlib
>  Issue Type: New Feature
>Reporter: Orhan Kislal
>Priority: Major
> Fix For: v1.20.0
>
>
> PageRank should support multiple columns as vertex identifiers



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1502) Add multi column support for wcc

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1502?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1502:
-
Fix Version/s: v1.20.0

> Add multi column support for wcc
> 
>
> Key: MADLIB-1502
> URL: https://issues.apache.org/jira/browse/MADLIB-1502
> Project: Apache MADlib
>  Issue Type: New Feature
>Reporter: Orhan Kislal
>Priority: Major
> Fix For: v1.20.0
>
>
> WCC should support multiple columns as vertex identifiers



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1455) compile params doesn't accept double quoted strings

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1455?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1455:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> compile params doesn't accept double quoted strings
> ---
>
> Key: MADLIB-1455
> URL: https://issues.apache.org/jira/browse/MADLIB-1455
> Project: Apache MADlib
>  Issue Type: Bug
>  Components: Deep Learning
>Reporter: Domino Valdano
>Priority: Minor
> Fix For: v1.20.0
>
>
> When I try to train with this mst table:
> mnist=# select * from mst_table_mnist;
>  
> ┌─┬──┬─┬──┐
>  │ mst_key │ model_id │ compile_params │ fit_params │
>  
> ├─┼──┼─┼──┤
>  │ 4 │ 1 │ loss="categorical_crossentropy", optimizer="SGD", 
> metrics=["accuracy"] │ epochs=1, batch_size=200 │
>  │ 2 │ 1 │ loss="categorical_crossentropy", optimizer="Adam(lr=0.1)", 
> metrics=["accuracy"] │ epochs=1, batch_size=100 │
>  │ 3 │ 1 │ loss="categorical_crossentropy", optimizer="Adam(lr=0.001)", 
> metrics=["accuracy"] │ epochs=1, batch_size=200 │
>  │ 1 │ 1 │ loss="categorical_crossentropy", optimizer="Adam(lr=0.0001)", 
> metrics=["accuracy"] │ epochs=1, batch_size=50 │
>  
> └─┴──┴─┴──┘
> I get this error message:
> ERROR: XX000: spiexceptions.InternalError: plpy.Error: model_keras error: 
> invalid optimizer name: "Adam (plpy_elog.c:121) (seg2 127.0.0.1:6004 
> pid=33258) (plpy_elog.c:121)
>  CONTEXT: Traceback (most recent call last):
>  PL/Python function "madlib_keras_fit_multiple_model", line 24, in 
>  fit_obj.fit_multiple_model()
>  PL/Python function "madlib_keras_fit_multiple_model", line 233, in 
> fit_multiple_model
>  PL/Python function "madlib_keras_fit_multiple_model", line 265, in 
> train_multiple_model
>  PL/Python function "madlib_keras_fit_multiple_model", line 912, in 
> run_training
>  PL/Python function "madlib_keras_fit_multiple_model"
> It works if I replace the double quotes with single quotes, even though these 
> are supposed to mean the same thing in a python expression.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1423) How to seed the environment (for reproducible results)

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1423?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1423:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> How to seed the environment (for reproducible results)
> --
>
> Key: MADLIB-1423
> URL: https://issues.apache.org/jira/browse/MADLIB-1423
> Project: Apache MADlib
>  Issue Type: Question
>  Components: Design, k-NN
>Reporter: Pranas Baliuka
>Priority: Minor
> Fix For: v1.20.0
>
>
> How to seed the environment (for reproducible results)?
> I'd love to have reproducible reults for PCA/k-NN algos.
>  
> Thanks!



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1481) DL: Passing null or temporal for sample_weight_mode errors out

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1481?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1481:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> DL: Passing null or temporal for sample_weight_mode errors out
> --
>
> Key: MADLIB-1481
> URL: https://issues.apache.org/jira/browse/MADLIB-1481
> Project: Apache MADlib
>  Issue Type: Bug
>  Components: Deep Learning
>Reporter: Frank McQuillan
>Priority: Minor
> Fix For: v1.20.0
>
>
> Passing sample_weight_mode as 'temporal' or NULL fails with the following 
> error although both these are valid values.
> Also we don't support sample_weight as a compile param, so maybe supporting 
> sample_weight_mode makes doesn't really add value
> {code}
> ERROR:  spiexceptions.InternalError: plpy.Error: invalid input value for 
> parameter sample_weight_mode=temporal, please refer to the documentation
> {code}
> The actual failure for sample_weight_mode = 'temporal' should be something 
> like
> {code}
> use of '
> 'sample_weight_mode="temporal") is restricted to '
> 'outputs that are at least 3D, i.e. that have '
> 'a time dimension
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1280) Add GROUP BY to ARIMA

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1280?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1280:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> Add GROUP BY to ARIMA
> -
>
> Key: MADLIB-1280
> URL: https://issues.apache.org/jira/browse/MADLIB-1280
> Project: Apache MADlib
>  Issue Type: Improvement
>Reporter: Frank McQuillan
>Priority: Major
> Fix For: v1.20.0
>
>
> Currently ARIMA does not support GROUP BY
> http://madlib.apache.org/docs/latest/group__grp__arima.html
> This JIRA is to add GROUP BY in an efficient way to ARIMA.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1478) DL: Passing in a custom function table to fit along with built in loss and metrics functions errors out

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1478?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1478:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> DL: Passing in a custom function table to fit along with built in loss and 
> metrics functions errors out
> ---
>
> Key: MADLIB-1478
> URL: https://issues.apache.org/jira/browse/MADLIB-1478
> Project: Apache MADlib
>  Issue Type: Bug
>  Components: Deep Learning
>Reporter: Frank McQuillan
>Priority: Minor
> Fix For: v1.20.0
>
>
> Passing in a custom function table to fit along with built in loss and 
> metrics functions errors out
> {code}
> SELECT madlib.load_top_k_accuracy_function('custom_function_table',
>3);
> SELECT madlib.madlib_keras_fit('iris_data_packed', 
> 'iris_model','iris_model_arch',1,
> $$loss='categorical_crossentropy',optimizer='Adam(lr=0.1)',metrics=['accuracy']$$,
> $$batch_size=10,epochs=1$$,1, FALSE, NULL, NULL, 
> FALSE,NULL,NULL,'custom_function_table');
> DETAIL:  Traceback (most recent call last):\n  File "", line 11, in 
> __plpython_procedure_fit_transition_wide_359961\n  File 
> "/Users/nikhilkak/workspace/madlib/build/src/ports/greenplum/6/modules/deep_learning/madlib_keras.py",
>  line 579, in fit_transition_wide\n  File 
> "/Users/nikhilkak/workspace/madlib/build/src/ports/greenplum/6/modules/deep_learning/madlib_keras.py",
>  line 618, in fit_transition\n  File 
> "/Users/nikhilkak/workspace/madlib/build/src/ports/greenplum/6/modules/deep_learning/madlib_keras.py",
>  line 91, in get_init_model_and_sess\n  File 
> "/Users/nikhilkak/workspace/madlib/build/src/ports/greenplum/6/modules/deep_learning/madlib_keras.py",
>  line 551, in init_model\n  File 
> "/Users/nikhilkak/workspace/madlib/build/src/ports/greenplum/6/modules/deep_learning/madlib_keras_wrapper.py",
>  line 347, in compile_model\n  File 
> "/Library/Python/2.7/site-packages/dill/_dill.py", line 283, in loads\n
> return load(file, ignore, **kwds)\n  File 
> "/Library/Python/2.7/site-packages/dill/_dill.py", line 278, in load\n
> return Unpickler(file, ignore=ignore, **kwds).load()\n  File 
> "/Library/Python/2.7/site-packages/dill/_dill.py", line 481, in load\nobj 
> = StockUnpickler.load(self)\n  File 
> "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/pickle.py",
>  line 864, in load\ndispatch[key](self)\nKeyError: \'{\'\n' 
> (plpy_elog.c:121)  (seg0 slice1 127.0.0.1:6002 pid=85404)
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1459) DL: Add Multiple input/output support to multi-model functions

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1459?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1459:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> DL: Add Multiple input/output support to multi-model functions
> --
>
> Key: MADLIB-1459
> URL: https://issues.apache.org/jira/browse/MADLIB-1459
> Project: Apache MADlib
>  Issue Type: New Feature
>  Components: Deep Learning
>Reporter: Orhan Kislal
>Priority: Major
> Fix For: v1.20.0
>
>
> This is a follow-up to MADLIB-1457
> We should add support for multiple input and outputs to the multi-model 
> methods.
>  # fit multiple
>  # automl
>  # hyperband
>  



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1485) DL: Unhelpful error message when loss/accuracy does not exist

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1485?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1485:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> DL: Unhelpful error message when loss/accuracy does not exist
> -
>
> Key: MADLIB-1485
> URL: https://issues.apache.org/jira/browse/MADLIB-1485
> Project: Apache MADlib
>  Issue Type: Bug
>  Components: Deep Learning
>Reporter: Frank McQuillan
>Priority: Minor
> Fix For: v1.20.0
>
>
> We throw an unhelpful error message when either the loss or the metrics 
> argument is invalid. We should check if this happens for any other argument
> {code}
> SELECT madlib.madlib_keras_fit('mnist_train_batched', 'mnist_lstm_model',
> 'model_arch_mnist_lstm', 1,
> $$ optimizer=SGD(lr=0.01, decay=1e-6, nesterov=True), loss='does_not_exist', 
> metrics=['accuracy']$$::text,
> $$ batch_size=25, epochs=1, verbose=0 $$::text, 5, TRUE, NULL, NULL);
> ERROR:  plpy.Error: Object table not specified for function 
> ['does_not_exist'] in compile_params (plpy_elog.c:121)
> {code}
> {code}
> SELECT madlib.madlib_keras_fit('mnist_train_batched', 'mnist_lstm_model',
> 'model_arch_mnist_lstm', 1,
> $$ optimizer=SGD(lr=0.01, decay=1e-6, nesterov=True), 
> loss='categorical_crossentropy', metrics=['foobar']$$::text,
> $$ batch_size=25, epochs=1, verbose=0 $$::text, 5, TRUE, NULL, NULL);
> ERROR:  plpy.Error: Object table not specified for function ['foobar'] in 
> compile_params (plpy_elog.c:121)
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1482) DL: metrics compute frequency should be >=1 only

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1482?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1482:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> DL: metrics compute frequency should be >=1 only
> 
>
> Key: MADLIB-1482
> URL: https://issues.apache.org/jira/browse/MADLIB-1482
> Project: Apache MADlib
>  Issue Type: Bug
>  Components: Deep Learning
>Reporter: Frank McQuillan
>Priority: Minor
> Fix For: v1.20.0
>
>
> metrics_compute_frequency should be >= 1 only. Currently it allows neg 
> numbers:
> {code}
> SELECT madlib.madlib_keras_fit('balanced2_train_packed',   -- source table
>'model1',  -- model output table
>'model_arch_library',  -- model arch table
> 1,-- model arch id
> $$ loss='categorical_crossentropy', 
> optimizer='adam', metrics=['accuracy'] $$,  -- compile_params
> $$ batch_size=64, epochs=1 $$,  -- fit_params
> 10,   -- num_iterations
> FALSE,-- use GPUs
> 'balanced2_test_packed',   -- validation 
> dataset
> -3,-- metrics compute 
> frequency
> FALSE,-- warm start
>'Frank',   -- name
>'Network test run'  -- description
>   );
> {code}
> produces
> {code}
> SELECT * FROM model1_summary;
> -[ RECORD 1 
> ]-+-
> source_table  | balanced2_train_packed
> model | model1
> dependent_varname | {y}
> independent_varname   | {feature_vector}
> model_arch_table  | model_arch_library
> model_id  | 1
> compile_params|  loss='categorical_crossentropy', 
> optimizer='adam', metrics=['accuracy'] 
> fit_params|  batch_size=64, epochs=1 
> num_iterations| 10
> validation_table  | balanced2_test_packed
> object_table  | 
> metrics_compute_frequency | -3
> name  | Frank
> description   | Network test run
> model_type| madlib_keras
> model_size| 5.9853515625
> start_training_time   | 2021-03-12 20:24:27.74585
> end_training_time | 2021-03-12 20:24:30.012898
> metrics_elapsed_time  | 
> {1.13839101791382,1.57564496994019,2.02039790153503,2.26697182655334}
> madlib_version| 1.18.0-dev
> num_classes   | {23}
> dependent_vartype | {text}
> normalizing_const | 1
> metrics_type  | {accuracy}
> loss_type | categorical_crossentropy
> training_metrics_final| 0.529687523841858
> training_loss_final   | 470.371795654297
> training_metrics  | 
> {0.283894240856171,0.344591349363327,0.489182680845261,0.529687523841858}
> training_loss | 
> {3195.37939453125,1194.63610839844,508.576507568359,470.371795654297}
> validation_metrics_final  | 0.52836537361145
> validation_loss_final | 11892.33203125
> validation_metrics| 
> {0.289903849363327,0.35432693362236,0.482692301273346,0.52836537361145}
> validation_loss   | 
> {35025.0390625,23250.08984375,12720.3359375,11892.33203125}
> metrics_iters | {3,6,9,10}
> y_class_values| 
> {class01,class02,class03,class04,class05,class06,class07,class08,class09,class10,class11,class12,class13,class14,class15,class16,class17,class18,class19,class20,class21,class22,normal}
> {code}
> Also if you make it 0 you get this cryptic error
> {code}
> InternalError: (psycopg2.errors.InternalError_) ZeroDivisionError: integer 
> division or modulo by zero (plpython.c:5038)
> CONTEXT:  Traceback (most recent call last):
>   PL/Python function "madlib_keras_fit", line 23, in 
> madlib_keras.fit(**globals())
>   PL/Python function "madlib_keras_fit", line 42, in wrapper
>   PL/Python function "madlib_keras_fit", line 273, in fit
>   PL/Python function "madlib_keras_fit", line 542, in 
> should_compute_metrics_this_iter
> PL/Python function "madlib_keras_fit"
> [SQL: SELECT madlib.madlib_keras_fit('balanced2_train_packed',   -- source 
> table
>'model1',  -- model output table
>'model_arch_library',  -- model arch table
>

[jira] [Updated] (MADLIB-1476) Support PG 13

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1476?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1476:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> Support PG 13
> -
>
> Key: MADLIB-1476
> URL: https://issues.apache.org/jira/browse/MADLIB-1476
> Project: Apache MADlib
>  Issue Type: New Feature
>Reporter: Frank McQuillan
>Priority: Major
> Fix For: v1.20.0
>
>
> Please update to support PG 13 which is the latest version.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Updated] (MADLIB-1480) DL: Passing in weighted_metrics fails

2022-07-18 Thread Orhan Kislal (Jira)


 [ 
https://issues.apache.org/jira/browse/MADLIB-1480?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Orhan Kislal updated MADLIB-1480:
-
Fix Version/s: v1.20.0
   (was: v1.19.0)

> DL: Passing in weighted_metrics fails
> -
>
> Key: MADLIB-1480
> URL: https://issues.apache.org/jira/browse/MADLIB-1480
> Project: Apache MADlib
>  Issue Type: Bug
>  Components: Deep Learning
>Reporter: Frank McQuillan
>Priority: Minor
> Fix For: v1.20.0
>
>
> Passing in weighted_metrics fails, not sure if we even support it
> {code}
> SELECT madlib.madlib_keras_fit( 'iris_data_packed', 'iris_model',  
> 'iris_model_arch',
>  1, 
> $$loss='categorical_crossentropy',optimizer='Adam(lr=0.1)',metrics=['accuracy'],weighted_metrics=['accuracy']$$,$$batch_size=10,epochs=1$$,1);
> ERROR:  spiexceptions.InternalError: ValueError: too many values to unpack 
> (plpy_elog.c:121)  (seg0 slice1 127.0.0.1:6002 pid=84135) (plpy_elog.c:121)
> CONTEXT:  Traceback (most recent call last):
>   PL/Python function "madlib_keras_fit", line 23, in 
> madlib_keras.fit(**globals())
>   PL/Python function "madlib_keras_fit", line 42, in wrapper
>   PL/Python function "madlib_keras_fit", line 298, in fit
>   PL/Python function "madlib_keras_fit", line 520, in compute_loss_and_metrics
>   PL/Python function "madlib_keras_fit", line 1001, in 
> get_loss_metric_from_keras_eval
> PL/Python function "madlib_keras_fit"
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Commented] (MADLIB-1504) Does madlib support arm platform?

2022-07-18 Thread Orhan Kislal (Jira)


[ 
https://issues.apache.org/jira/browse/MADLIB-1504?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17568136#comment-17568136
 ] 

Orhan Kislal commented on MADLIB-1504:
--

Hi,

We haven't tested with ARM but as long as you have the necessary dependencies, 
it should be possible to compile. Please feel free to post any errors here for 
us to take a look at. Officially supporting ARM would be great!

Thanks

> Does madlib support arm platform? 
> --
>
> Key: MADLIB-1504
> URL: https://issues.apache.org/jira/browse/MADLIB-1504
> Project: Apache MADlib
>  Issue Type: Question
>Reporter: seth.qiang
>Priority: Major
>
> I looked up the documentation and didn't see anything about the arm platform 
> does anyone know about this?
> https://cwiki.apache.org/confluence/display/MADLIB/Database+and+OS+Support



--
This message was sent by Atlassian Jira
(v8.20.10#820010)


[jira] [Commented] (MADLIB-1505) Support for Windows Platform

2022-07-18 Thread Orhan Kislal (Jira)


[ 
https://issues.apache.org/jira/browse/MADLIB-1505?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17568133#comment-17568133
 ] 

Orhan Kislal commented on MADLIB-1505:
--

Hi,

Unfortunately, we don't officially support Windows. You might want to try 
compiling from source but I don't think it will be an easy task.

Thanks

> Support for Windows Platform
> 
>
> Key: MADLIB-1505
> URL: https://issues.apache.org/jira/browse/MADLIB-1505
> Project: Apache MADlib
>  Issue Type: New Feature
>Reporter: Poorna Chandra Raju
>Priority: Major
>
> *Is madlib available for Windows platform at least for Postgres ?*
> If not, is it possible to build existing code on Windows or is it already in 
> the road map ?
> Let me know the possibilities and challenges on achieving this task.
> Thanks.



--
This message was sent by Atlassian Jira
(v8.20.10#820010)