[ https://issues.apache.org/jira/browse/SPARK-18084?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16264864#comment-16264864 ]
Yassine Labidi commented on SPARK-18084: ---------------------------------------- What's the status on this issue ? > write.partitionBy() does not recognize nested columns that select() can access > ------------------------------------------------------------------------------ > > Key: SPARK-18084 > URL: https://issues.apache.org/jira/browse/SPARK-18084 > Project: Spark > Issue Type: Bug > Components: SQL > Affects Versions: 2.0.0, 2.0.1 > Reporter: Nicholas Chammas > Priority: Minor > > Here's a simple repro in the PySpark shell: > {code} > from pyspark.sql import Row > rdd = spark.sparkContext.parallelize([Row(a=Row(b=5))]) > df = spark.createDataFrame(rdd) > df.printSchema() > df.select('a.b').show() # works > df.write.partitionBy('a.b').text('/tmp/test') # doesn't work > {code} > Here's what I see when I run this: > {code} > >>> from pyspark.sql import Row > >>> rdd = spark.sparkContext.parallelize([Row(a=Row(b=5))]) > >>> df = spark.createDataFrame(rdd) > >>> df.printSchema() > root > |-- a: struct (nullable = true) > | |-- b: long (nullable = true) > >>> df.show() > +---+ > | a| > +---+ > |[5]| > +---+ > >>> df.select('a.b').show() > +---+ > | b| > +---+ > | 5| > +---+ > >>> df.write.partitionBy('a.b').text('/tmp/test') > Traceback (most recent call last): > File > "/usr/local/Cellar/apache-spark/2.0.1/libexec/python/pyspark/sql/utils.py", > line 63, in deco > return f(*a, **kw) > File > "/usr/local/Cellar/apache-spark/2.0.1/libexec/python/lib/py4j-0.10.3-src.zip/py4j/protocol.py", > line 319, in get_return_value > py4j.protocol.Py4JJavaError: An error occurred while calling o233.text. > : org.apache.spark.sql.AnalysisException: Partition column a.b not found in > schema > StructType(StructField(a,StructType(StructField(b,LongType,true)),true)); > at > org.apache.spark.sql.execution.datasources.PartitioningUtils$$anonfun$partitionColumnsSchema$1$$anonfun$apply$10.apply(PartitioningUtils.scala:368) > at > org.apache.spark.sql.execution.datasources.PartitioningUtils$$anonfun$partitionColumnsSchema$1$$anonfun$apply$10.apply(PartitioningUtils.scala:368) > at scala.Option.getOrElse(Option.scala:121) > at > org.apache.spark.sql.execution.datasources.PartitioningUtils$$anonfun$partitionColumnsSchema$1.apply(PartitioningUtils.scala:367) > at > org.apache.spark.sql.execution.datasources.PartitioningUtils$$anonfun$partitionColumnsSchema$1.apply(PartitioningUtils.scala:366) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) > at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > at scala.collection.AbstractIterable.foreach(Iterable.scala:54) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.sql.execution.datasources.PartitioningUtils$.partitionColumnsSchema(PartitioningUtils.scala:366) > at > org.apache.spark.sql.execution.datasources.PartitioningUtils$.validatePartitionColumn(PartitioningUtils.scala:349) > at > org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:458) > at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:211) > at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:194) > at org.apache.spark.sql.DataFrameWriter.text(DataFrameWriter.scala:534) > at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:280) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:214) > at java.lang.Thread.run(Thread.java:745) > During handling of the above exception, another exception occurred: > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > File > "/usr/local/Cellar/apache-spark/2.0.1/libexec/python/pyspark/sql/readwriter.py", > line 656, in text > self._jwrite.text(path) > File > "/usr/local/Cellar/apache-spark/2.0.1/libexec/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py", > line 1133, in __call__ > File > "/usr/local/Cellar/apache-spark/2.0.1/libexec/python/pyspark/sql/utils.py", > line 69, in deco > raise AnalysisException(s.split(': ', 1)[1], stackTrace) > pyspark.sql.utils.AnalysisException: 'Partition column a.b not found in > schema > StructType(StructField(a,StructType(StructField(b,LongType,true)),true));' > {code} > I don't understand why there is an {{AnalysisException}} when referring to > {{'a.b'}} in the {{write.partitionBy()}} operation, but not when we do a > {{select()}}. > Is this expected behavior somehow? -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org