[jira] [Assigned] (SPARK-17975) EMLDAOptimizer fails with ClassCastException on YARN
[ https://issues.apache.org/jira/browse/SPARK-17975?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Joseph K. Bradley reassigned SPARK-17975: - Assignee: Tathagata Das > EMLDAOptimizer fails with ClassCastException on YARN > > > Key: SPARK-17975 > URL: https://issues.apache.org/jira/browse/SPARK-17975 > Project: Spark > Issue Type: Bug > Components: MLlib >Affects Versions: 2.0.1 > Environment: Centos 6, CDH 5.7, Java 1.7u80 >Reporter: Jeff Stein >Assignee: Tathagata Das > Fix For: 2.0.3, 2.1.1, 2.2.0 > > Attachments: docs.txt > > > I'm able to reproduce the error consistently with a 2000 record text file > with each record having 1-5 terms and checkpointing enabled. It looks like > the problem was introduced with the resolution for SPARK-13355. > The EdgeRDD class seems to be lying about it's type in a way that causes > RDD.mapPartitionsWithIndex method to be unusable when it's referenced as an > RDD of Edge elements. > {code} > val spark = SparkSession.builder.appName("lda").getOrCreate() > spark.sparkContext.setCheckpointDir("hdfs:///tmp/checkpoints") > val data: RDD[(Long, Vector)] = // snip > data.setName("data").cache() > val lda = new LDA > val optimizer = new EMLDAOptimizer > lda.setOptimizer(optimizer) > .setK(10) > .setMaxIterations(400) > .setAlpha(-1) > .setBeta(-1) > .setCheckpointInterval(7) > val ldaModel = lda.run(data) > {code} > {noformat} > 16/10/16 23:53:54 WARN TaskSetManager: Lost task 3.0 in stage 348.0 (TID > 1225, server2.domain): java.lang.ClassCastException: scala.Tuple2 cannot be > cast to org.apache.spark.graphx.Edge > at > org.apache.spark.graphx.EdgeRDD$$anonfun$1$$anonfun$apply$1.apply(EdgeRDD.scala:107) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at > org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) > at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107) > at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:105) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332) > at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330) > at > org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935) > at > org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926) > at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866) > at > org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926) > at > org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670) > at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:281) > at org.apache.spark.graphx.EdgeRDD.compute(EdgeRDD.scala:50) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:722) > {noformat} -- This message was sent by Atlassian JIRA (v6.3.15#6346) - To unsubscribe, e-mail: issues-unsubscr...@spark.a
[jira] [Assigned] (SPARK-17975) EMLDAOptimizer fails with ClassCastException on YARN
[ https://issues.apache.org/jira/browse/SPARK-17975?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Apache Spark reassigned SPARK-17975: Assignee: (was: Apache Spark) > EMLDAOptimizer fails with ClassCastException on YARN > > > Key: SPARK-17975 > URL: https://issues.apache.org/jira/browse/SPARK-17975 > Project: Spark > Issue Type: Bug > Components: MLlib >Affects Versions: 2.0.1 > Environment: Centos 6, CDH 5.7, Java 1.7u80 >Reporter: Jeff Stein > Attachments: docs.txt > > > I'm able to reproduce the error consistently with a 2000 record text file > with each record having 1-5 terms and checkpointing enabled. It looks like > the problem was introduced with the resolution for SPARK-13355. > The EdgeRDD class seems to be lying about it's type in a way that causes > RDD.mapPartitionsWithIndex method to be unusable when it's referenced as an > RDD of Edge elements. > {code} > val spark = SparkSession.builder.appName("lda").getOrCreate() > spark.sparkContext.setCheckpointDir("hdfs:///tmp/checkpoints") > val data: RDD[(Long, Vector)] = // snip > data.setName("data").cache() > val lda = new LDA > val optimizer = new EMLDAOptimizer > lda.setOptimizer(optimizer) > .setK(10) > .setMaxIterations(400) > .setAlpha(-1) > .setBeta(-1) > .setCheckpointInterval(7) > val ldaModel = lda.run(data) > {code} > {noformat} > 16/10/16 23:53:54 WARN TaskSetManager: Lost task 3.0 in stage 348.0 (TID > 1225, server2.domain): java.lang.ClassCastException: scala.Tuple2 cannot be > cast to org.apache.spark.graphx.Edge > at > org.apache.spark.graphx.EdgeRDD$$anonfun$1$$anonfun$apply$1.apply(EdgeRDD.scala:107) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at > org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) > at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107) > at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:105) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332) > at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330) > at > org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935) > at > org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926) > at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866) > at > org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926) > at > org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670) > at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:281) > at org.apache.spark.graphx.EdgeRDD.compute(EdgeRDD.scala:50) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:722) > {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org
[jira] [Assigned] (SPARK-17975) EMLDAOptimizer fails with ClassCastException on YARN
[ https://issues.apache.org/jira/browse/SPARK-17975?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Apache Spark reassigned SPARK-17975: Assignee: Apache Spark > EMLDAOptimizer fails with ClassCastException on YARN > > > Key: SPARK-17975 > URL: https://issues.apache.org/jira/browse/SPARK-17975 > Project: Spark > Issue Type: Bug > Components: MLlib >Affects Versions: 2.0.1 > Environment: Centos 6, CDH 5.7, Java 1.7u80 >Reporter: Jeff Stein >Assignee: Apache Spark > Attachments: docs.txt > > > I'm able to reproduce the error consistently with a 2000 record text file > with each record having 1-5 terms and checkpointing enabled. It looks like > the problem was introduced with the resolution for SPARK-13355. > The EdgeRDD class seems to be lying about it's type in a way that causes > RDD.mapPartitionsWithIndex method to be unusable when it's referenced as an > RDD of Edge elements. > {code} > val spark = SparkSession.builder.appName("lda").getOrCreate() > spark.sparkContext.setCheckpointDir("hdfs:///tmp/checkpoints") > val data: RDD[(Long, Vector)] = // snip > data.setName("data").cache() > val lda = new LDA > val optimizer = new EMLDAOptimizer > lda.setOptimizer(optimizer) > .setK(10) > .setMaxIterations(400) > .setAlpha(-1) > .setBeta(-1) > .setCheckpointInterval(7) > val ldaModel = lda.run(data) > {code} > {noformat} > 16/10/16 23:53:54 WARN TaskSetManager: Lost task 3.0 in stage 348.0 (TID > 1225, server2.domain): java.lang.ClassCastException: scala.Tuple2 cannot be > cast to org.apache.spark.graphx.Edge > at > org.apache.spark.graphx.EdgeRDD$$anonfun$1$$anonfun$apply$1.apply(EdgeRDD.scala:107) > at scala.collection.Iterator$class.foreach(Iterator.scala:893) > at > org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28) > at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107) > at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:105) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820) > at > org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:820) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:332) > at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:330) > at > org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935) > at > org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926) > at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866) > at > org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926) > at > org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670) > at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:281) > at org.apache.spark.graphx.EdgeRDD.compute(EdgeRDD.scala:50) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:283) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47) > at org.apache.spark.scheduler.Task.run(Task.scala:86) > at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:722) > {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spa