[jira] [Assigned] (SPARK-22289) Cannot save LogisticRegressionClassificationModel with bounds on coefficients

2017-11-06 Thread Yanbo Liang (JIRA)

 [ 
https://issues.apache.org/jira/browse/SPARK-22289?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Yanbo Liang reassigned SPARK-22289:
---

Assignee: yuhao yang

> Cannot save LogisticRegressionClassificationModel with bounds on coefficients
> -
>
> Key: SPARK-22289
> URL: https://issues.apache.org/jira/browse/SPARK-22289
> Project: Spark
>  Issue Type: Bug
>  Components: ML
>Affects Versions: 2.2.0
>Reporter: Nic Eggert
>Assignee: yuhao yang
>
> I think this was introduced in SPARK-20047.
> Trying to call save on a logistic regression model trained with bounds on its 
> parameters throws an error. This seems to be because Spark doesn't know how 
> to serialize the Matrix parameter.
> Model is set up like this:
> {code}
> val calibrator = new LogisticRegression()
>   .setFeaturesCol("uncalibrated_probability")
>   .setLabelCol("label")
>   .setWeightCol("weight")
>   .setStandardization(false)
>   .setLowerBoundsOnCoefficients(new DenseMatrix(1, 1, Array(0.0)))
>   .setFamily("binomial")
>   .setProbabilityCol("probability")
>   .setPredictionCol("logistic_prediction")
>   .setRawPredictionCol("logistic_raw_prediction")
> {code}
> {code}
> 17/10/16 15:36:59 ERROR ApplicationMaster: User class threw exception: 
> scala.NotImplementedError: The default jsonEncode only supports string and 
> vector. org.apache.spark.ml.param.Param must override jsonEncode for 
> org.apache.spark.ml.linalg.DenseMatrix.
> scala.NotImplementedError: The default jsonEncode only supports string and 
> vector. org.apache.spark.ml.param.Param must override jsonEncode for 
> org.apache.spark.ml.linalg.DenseMatrix.
>   at org.apache.spark.ml.param.Param.jsonEncode(params.scala:98)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:296)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:295)
>   at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>   at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295)
>   at scala.Option.getOrElse(Option.scala:121)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$.getMetadataToSave(ReadWrite.scala:295)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:277)
>   at 
> org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelWriter.saveImpl(LogisticRegression.scala:1182)
>   at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:254)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:253)
>   at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>   at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:253)
>   at 
> org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:337)
>   at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114)
>   -snip-
> {code}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Assigned] (SPARK-22289) Cannot save LogisticRegressionClassificationModel with bounds on coefficients

2017-10-18 Thread Apache Spark (JIRA)

 [ 
https://issues.apache.org/jira/browse/SPARK-22289?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-22289:


Assignee: (was: Apache Spark)

> Cannot save LogisticRegressionClassificationModel with bounds on coefficients
> -
>
> Key: SPARK-22289
> URL: https://issues.apache.org/jira/browse/SPARK-22289
> Project: Spark
>  Issue Type: Bug
>  Components: ML
>Affects Versions: 2.2.0
>Reporter: Nic Eggert
>
> I think this was introduced in SPARK-20047.
> Trying to call save on a logistic regression model trained with bounds on its 
> parameters throws an error. This seems to be because Spark doesn't know how 
> to serialize the Matrix parameter.
> Model is set up like this:
> {code}
> val calibrator = new LogisticRegression()
>   .setFeaturesCol("uncalibrated_probability")
>   .setLabelCol("label")
>   .setWeightCol("weight")
>   .setStandardization(false)
>   .setLowerBoundsOnCoefficients(new DenseMatrix(1, 1, Array(0.0)))
>   .setFamily("binomial")
>   .setProbabilityCol("probability")
>   .setPredictionCol("logistic_prediction")
>   .setRawPredictionCol("logistic_raw_prediction")
> {code}
> {code}
> 17/10/16 15:36:59 ERROR ApplicationMaster: User class threw exception: 
> scala.NotImplementedError: The default jsonEncode only supports string and 
> vector. org.apache.spark.ml.param.Param must override jsonEncode for 
> org.apache.spark.ml.linalg.DenseMatrix.
> scala.NotImplementedError: The default jsonEncode only supports string and 
> vector. org.apache.spark.ml.param.Param must override jsonEncode for 
> org.apache.spark.ml.linalg.DenseMatrix.
>   at org.apache.spark.ml.param.Param.jsonEncode(params.scala:98)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:296)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:295)
>   at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>   at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295)
>   at scala.Option.getOrElse(Option.scala:121)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$.getMetadataToSave(ReadWrite.scala:295)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:277)
>   at 
> org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelWriter.saveImpl(LogisticRegression.scala:1182)
>   at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:254)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:253)
>   at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>   at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:253)
>   at 
> org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:337)
>   at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114)
>   -snip-
> {code}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Assigned] (SPARK-22289) Cannot save LogisticRegressionClassificationModel with bounds on coefficients

2017-10-18 Thread Apache Spark (JIRA)

 [ 
https://issues.apache.org/jira/browse/SPARK-22289?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-22289:


Assignee: Apache Spark

> Cannot save LogisticRegressionClassificationModel with bounds on coefficients
> -
>
> Key: SPARK-22289
> URL: https://issues.apache.org/jira/browse/SPARK-22289
> Project: Spark
>  Issue Type: Bug
>  Components: ML
>Affects Versions: 2.2.0
>Reporter: Nic Eggert
>Assignee: Apache Spark
>
> I think this was introduced in SPARK-20047.
> Trying to call save on a logistic regression model trained with bounds on its 
> parameters throws an error. This seems to be because Spark doesn't know how 
> to serialize the Matrix parameter.
> Model is set up like this:
> {code}
> val calibrator = new LogisticRegression()
>   .setFeaturesCol("uncalibrated_probability")
>   .setLabelCol("label")
>   .setWeightCol("weight")
>   .setStandardization(false)
>   .setLowerBoundsOnCoefficients(new DenseMatrix(1, 1, Array(0.0)))
>   .setFamily("binomial")
>   .setProbabilityCol("probability")
>   .setPredictionCol("logistic_prediction")
>   .setRawPredictionCol("logistic_raw_prediction")
> {code}
> {code}
> 17/10/16 15:36:59 ERROR ApplicationMaster: User class threw exception: 
> scala.NotImplementedError: The default jsonEncode only supports string and 
> vector. org.apache.spark.ml.param.Param must override jsonEncode for 
> org.apache.spark.ml.linalg.DenseMatrix.
> scala.NotImplementedError: The default jsonEncode only supports string and 
> vector. org.apache.spark.ml.param.Param must override jsonEncode for 
> org.apache.spark.ml.linalg.DenseMatrix.
>   at org.apache.spark.ml.param.Param.jsonEncode(params.scala:98)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:296)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:295)
>   at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at 
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>   at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>   at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295)
>   at scala.Option.getOrElse(Option.scala:121)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$.getMetadataToSave(ReadWrite.scala:295)
>   at 
> org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:277)
>   at 
> org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelWriter.saveImpl(LogisticRegression.scala:1182)
>   at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:254)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:253)
>   at 
> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
>   at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
>   at 
> org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:253)
>   at 
> org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:337)
>   at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114)
>   -snip-
> {code}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org