[jira] [Assigned] (SPARK-22289) Cannot save LogisticRegressionClassificationModel with bounds on coefficients
[ https://issues.apache.org/jira/browse/SPARK-22289?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Yanbo Liang reassigned SPARK-22289: --- Assignee: yuhao yang > Cannot save LogisticRegressionClassificationModel with bounds on coefficients > - > > Key: SPARK-22289 > URL: https://issues.apache.org/jira/browse/SPARK-22289 > Project: Spark > Issue Type: Bug > Components: ML >Affects Versions: 2.2.0 >Reporter: Nic Eggert >Assignee: yuhao yang > > I think this was introduced in SPARK-20047. > Trying to call save on a logistic regression model trained with bounds on its > parameters throws an error. This seems to be because Spark doesn't know how > to serialize the Matrix parameter. > Model is set up like this: > {code} > val calibrator = new LogisticRegression() > .setFeaturesCol("uncalibrated_probability") > .setLabelCol("label") > .setWeightCol("weight") > .setStandardization(false) > .setLowerBoundsOnCoefficients(new DenseMatrix(1, 1, Array(0.0))) > .setFamily("binomial") > .setProbabilityCol("probability") > .setPredictionCol("logistic_prediction") > .setRawPredictionCol("logistic_raw_prediction") > {code} > {code} > 17/10/16 15:36:59 ERROR ApplicationMaster: User class threw exception: > scala.NotImplementedError: The default jsonEncode only supports string and > vector. org.apache.spark.ml.param.Param must override jsonEncode for > org.apache.spark.ml.linalg.DenseMatrix. > scala.NotImplementedError: The default jsonEncode only supports string and > vector. org.apache.spark.ml.param.Param must override jsonEncode for > org.apache.spark.ml.linalg.DenseMatrix. > at org.apache.spark.ml.param.Param.jsonEncode(params.scala:98) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:296) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:295) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295) > at scala.Option.getOrElse(Option.scala:121) > at > org.apache.spark.ml.util.DefaultParamsWriter$.getMetadataToSave(ReadWrite.scala:295) > at > org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:277) > at > org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelWriter.saveImpl(LogisticRegression.scala:1182) > at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:254) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:253) > at > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:253) > at > org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:337) > at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114) > -snip- > {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org
[jira] [Assigned] (SPARK-22289) Cannot save LogisticRegressionClassificationModel with bounds on coefficients
[ https://issues.apache.org/jira/browse/SPARK-22289?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Apache Spark reassigned SPARK-22289: Assignee: (was: Apache Spark) > Cannot save LogisticRegressionClassificationModel with bounds on coefficients > - > > Key: SPARK-22289 > URL: https://issues.apache.org/jira/browse/SPARK-22289 > Project: Spark > Issue Type: Bug > Components: ML >Affects Versions: 2.2.0 >Reporter: Nic Eggert > > I think this was introduced in SPARK-20047. > Trying to call save on a logistic regression model trained with bounds on its > parameters throws an error. This seems to be because Spark doesn't know how > to serialize the Matrix parameter. > Model is set up like this: > {code} > val calibrator = new LogisticRegression() > .setFeaturesCol("uncalibrated_probability") > .setLabelCol("label") > .setWeightCol("weight") > .setStandardization(false) > .setLowerBoundsOnCoefficients(new DenseMatrix(1, 1, Array(0.0))) > .setFamily("binomial") > .setProbabilityCol("probability") > .setPredictionCol("logistic_prediction") > .setRawPredictionCol("logistic_raw_prediction") > {code} > {code} > 17/10/16 15:36:59 ERROR ApplicationMaster: User class threw exception: > scala.NotImplementedError: The default jsonEncode only supports string and > vector. org.apache.spark.ml.param.Param must override jsonEncode for > org.apache.spark.ml.linalg.DenseMatrix. > scala.NotImplementedError: The default jsonEncode only supports string and > vector. org.apache.spark.ml.param.Param must override jsonEncode for > org.apache.spark.ml.linalg.DenseMatrix. > at org.apache.spark.ml.param.Param.jsonEncode(params.scala:98) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:296) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:295) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295) > at scala.Option.getOrElse(Option.scala:121) > at > org.apache.spark.ml.util.DefaultParamsWriter$.getMetadataToSave(ReadWrite.scala:295) > at > org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:277) > at > org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelWriter.saveImpl(LogisticRegression.scala:1182) > at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:254) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:253) > at > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:253) > at > org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:337) > at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114) > -snip- > {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org
[jira] [Assigned] (SPARK-22289) Cannot save LogisticRegressionClassificationModel with bounds on coefficients
[ https://issues.apache.org/jira/browse/SPARK-22289?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ] Apache Spark reassigned SPARK-22289: Assignee: Apache Spark > Cannot save LogisticRegressionClassificationModel with bounds on coefficients > - > > Key: SPARK-22289 > URL: https://issues.apache.org/jira/browse/SPARK-22289 > Project: Spark > Issue Type: Bug > Components: ML >Affects Versions: 2.2.0 >Reporter: Nic Eggert >Assignee: Apache Spark > > I think this was introduced in SPARK-20047. > Trying to call save on a logistic regression model trained with bounds on its > parameters throws an error. This seems to be because Spark doesn't know how > to serialize the Matrix parameter. > Model is set up like this: > {code} > val calibrator = new LogisticRegression() > .setFeaturesCol("uncalibrated_probability") > .setLabelCol("label") > .setWeightCol("weight") > .setStandardization(false) > .setLowerBoundsOnCoefficients(new DenseMatrix(1, 1, Array(0.0))) > .setFamily("binomial") > .setProbabilityCol("probability") > .setPredictionCol("logistic_prediction") > .setRawPredictionCol("logistic_raw_prediction") > {code} > {code} > 17/10/16 15:36:59 ERROR ApplicationMaster: User class threw exception: > scala.NotImplementedError: The default jsonEncode only supports string and > vector. org.apache.spark.ml.param.Param must override jsonEncode for > org.apache.spark.ml.linalg.DenseMatrix. > scala.NotImplementedError: The default jsonEncode only supports string and > vector. org.apache.spark.ml.param.Param must override jsonEncode for > org.apache.spark.ml.linalg.DenseMatrix. > at org.apache.spark.ml.param.Param.jsonEncode(params.scala:98) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:296) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1$$anonfun$2.apply(ReadWrite.scala:295) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) > at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > at scala.collection.AbstractTraversable.map(Traversable.scala:104) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295) > at > org.apache.spark.ml.util.DefaultParamsWriter$$anonfun$1.apply(ReadWrite.scala:295) > at scala.Option.getOrElse(Option.scala:121) > at > org.apache.spark.ml.util.DefaultParamsWriter$.getMetadataToSave(ReadWrite.scala:295) > at > org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:277) > at > org.apache.spark.ml.classification.LogisticRegressionModel$LogisticRegressionModelWriter.saveImpl(LogisticRegression.scala:1182) > at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:254) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$$anonfun$saveImpl$1.apply(Pipeline.scala:253) > at > scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33) > at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186) > at > org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:253) > at > org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:337) > at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:114) > -snip- > {code} -- This message was sent by Atlassian JIRA (v6.4.14#64029) - To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org For additional commands, e-mail: issues-h...@spark.apache.org