[jira] [Assigned] (SPARK-24615) Accelerator-aware task scheduling for Spark

2019-02-22 Thread Xiangrui Meng (JIRA)


 [ 
https://issues.apache.org/jira/browse/SPARK-24615?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiangrui Meng reassigned SPARK-24615:
-

Assignee: Xingbo Jiang

> Accelerator-aware task scheduling for Spark
> ---
>
> Key: SPARK-24615
> URL: https://issues.apache.org/jira/browse/SPARK-24615
> Project: Spark
>  Issue Type: Improvement
>  Components: Spark Core
>Affects Versions: 2.4.0
>Reporter: Saisai Shao
>Assignee: Xingbo Jiang
>Priority: Major
>  Labels: Hydrogen, SPIP
>
> In the machine learning area, accelerator card (GPU, FPGA, TPU) is 
> predominant compared to CPUs. To make the current Spark architecture to work 
> with accelerator cards, Spark itself should understand the existence of 
> accelerators and know how to schedule task onto the executors where 
> accelerators are equipped.
> Current Spark’s scheduler schedules tasks based on the locality of the data 
> plus the available of CPUs. This will introduce some problems when scheduling 
> tasks with accelerators required.
>  # CPU cores are usually more than accelerators on one node, using CPU cores 
> to schedule accelerator required tasks will introduce the mismatch.
>  # In one cluster, we always assume that CPU is equipped in each node, but 
> this is not true of accelerator cards.
>  # The existence of heterogeneous tasks (accelerator required or not) 
> requires scheduler to schedule tasks with a smart way.
> So here propose to improve the current scheduler to support heterogeneous 
> tasks (accelerator requires or not). This can be part of the work of Project 
> hydrogen.
> Details is attached in google doc. It doesn't cover all the implementation 
> details, just highlight the parts should be changed.
>  
> CC [~yanboliang] [~merlintang]



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Assigned] (SPARK-24615) Accelerator-aware task scheduling for Spark

2018-09-01 Thread Saisai Shao (JIRA)


 [ 
https://issues.apache.org/jira/browse/SPARK-24615?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Saisai Shao reassigned SPARK-24615:
---

Assignee: (was: Saisai Shao)

> Accelerator-aware task scheduling for Spark
> ---
>
> Key: SPARK-24615
> URL: https://issues.apache.org/jira/browse/SPARK-24615
> Project: Spark
>  Issue Type: Improvement
>  Components: Spark Core
>Affects Versions: 2.4.0
>Reporter: Saisai Shao
>Priority: Major
>  Labels: Hydrogen, SPIP
>
> In the machine learning area, accelerator card (GPU, FPGA, TPU) is 
> predominant compared to CPUs. To make the current Spark architecture to work 
> with accelerator cards, Spark itself should understand the existence of 
> accelerators and know how to schedule task onto the executors where 
> accelerators are equipped.
> Current Spark’s scheduler schedules tasks based on the locality of the data 
> plus the available of CPUs. This will introduce some problems when scheduling 
> tasks with accelerators required.
>  # CPU cores are usually more than accelerators on one node, using CPU cores 
> to schedule accelerator required tasks will introduce the mismatch.
>  # In one cluster, we always assume that CPU is equipped in each node, but 
> this is not true of accelerator cards.
>  # The existence of heterogeneous tasks (accelerator required or not) 
> requires scheduler to schedule tasks with a smart way.
> So here propose to improve the current scheduler to support heterogeneous 
> tasks (accelerator requires or not). This can be part of the work of Project 
> hydrogen.
> Details is attached in google doc. It doesn't cover all the implementation 
> details, just highlight the parts should be changed.
>  
> CC [~yanboliang] [~merlintang]



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Assigned] (SPARK-24615) Accelerator aware task scheduling for Spark

2018-07-12 Thread Xiangrui Meng (JIRA)


 [ 
https://issues.apache.org/jira/browse/SPARK-24615?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Xiangrui Meng reassigned SPARK-24615:
-

Assignee: Saisai Shao

> Accelerator aware task scheduling for Spark
> ---
>
> Key: SPARK-24615
> URL: https://issues.apache.org/jira/browse/SPARK-24615
> Project: Spark
>  Issue Type: Improvement
>  Components: Spark Core
>Affects Versions: 2.4.0
>Reporter: Saisai Shao
>Assignee: Saisai Shao
>Priority: Major
>  Labels: Hydrogen, SPIP
>
> In the machine learning area, accelerator card (GPU, FPGA, TPU) is 
> predominant compared to CPUs. To make the current Spark architecture to work 
> with accelerator cards, Spark itself should understand the existence of 
> accelerators and know how to schedule task onto the executors where 
> accelerators are equipped.
> Current Spark’s scheduler schedules tasks based on the locality of the data 
> plus the available of CPUs. This will introduce some problems when scheduling 
> tasks with accelerators required.
>  # CPU cores are usually more than accelerators on one node, using CPU cores 
> to schedule accelerator required tasks will introduce the mismatch.
>  # In one cluster, we always assume that CPU is equipped in each node, but 
> this is not true of accelerator cards.
>  # The existence of heterogeneous tasks (accelerator required or not) 
> requires scheduler to schedule tasks with a smart way.
> So here propose to improve the current scheduler to support heterogeneous 
> tasks (accelerator requires or not). This can be part of the work of Project 
> hydrogen.
> Details is attached in google doc. It doesn't cover all the implementation 
> details, just highlight the parts should be changed.
>  
> CC [~yanboliang] [~merlintang]



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org