[jira] [Assigned] (SPARK-3162) Train DecisionTree locally when possible

2016-08-29 Thread Apache Spark (JIRA)

 [ 
https://issues.apache.org/jira/browse/SPARK-3162?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-3162:
---

Assignee: Apache Spark

> Train DecisionTree locally when possible
> 
>
> Key: SPARK-3162
> URL: https://issues.apache.org/jira/browse/SPARK-3162
> Project: Spark
>  Issue Type: Improvement
>  Components: ML
>Reporter: Joseph K. Bradley
>Assignee: Apache Spark
>Priority: Critical
>
> Improvement: communication
> Currently, every level of a DecisionTree is trained in a distributed manner.  
> However, at deeper levels in the tree, it is possible that a small set of 
> training data will be matched with any given node.  If the node’s training 
> data can fit on one machine’s memory, it may be more efficient to shuffle the 
> data and do local training for the rest of the subtree rooted at that node.
> Note: It is possible that local training would become possible at different 
> levels in different branches of the tree.  There are multiple options for 
> handling this case:
> (1) Train in a distributed fashion until all remaining nodes can be trained 
> locally.  This would entail training multiple levels at once (locally).
> (2) Train branches locally when possible, and interleave this with 
> distributed training of the other branches.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Assigned] (SPARK-3162) Train DecisionTree locally when possible

2016-08-29 Thread Apache Spark (JIRA)

 [ 
https://issues.apache.org/jira/browse/SPARK-3162?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-3162:
---

Assignee: (was: Apache Spark)

> Train DecisionTree locally when possible
> 
>
> Key: SPARK-3162
> URL: https://issues.apache.org/jira/browse/SPARK-3162
> Project: Spark
>  Issue Type: Improvement
>  Components: ML
>Reporter: Joseph K. Bradley
>Priority: Critical
>
> Improvement: communication
> Currently, every level of a DecisionTree is trained in a distributed manner.  
> However, at deeper levels in the tree, it is possible that a small set of 
> training data will be matched with any given node.  If the node’s training 
> data can fit on one machine’s memory, it may be more efficient to shuffle the 
> data and do local training for the rest of the subtree rooted at that node.
> Note: It is possible that local training would become possible at different 
> levels in different branches of the tree.  There are multiple options for 
> handling this case:
> (1) Train in a distributed fashion until all remaining nodes can be trained 
> locally.  This would entail training multiple levels at once (locally).
> (2) Train branches locally when possible, and interleave this with 
> distributed training of the other branches.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org