[jira] [Assigned] (SPARK-38091) AvroSerializer can cause java.lang.ClassCastException at run time

2022-02-02 Thread Apache Spark (Jira)


 [ 
https://issues.apache.org/jira/browse/SPARK-38091?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-38091:


Assignee: Apache Spark

> AvroSerializer can cause java.lang.ClassCastException at run time
> -
>
> Key: SPARK-38091
> URL: https://issues.apache.org/jira/browse/SPARK-38091
> Project: Spark
>  Issue Type: Bug
>  Components: SQL
>Affects Versions: 3.0.0, 3.0.1, 3.0.2, 3.0.3, 3.1.0, 3.1.1, 3.1.2, 3.2.0, 
> 3.2.1
>Reporter: Zhenhao Li
>Assignee: Apache Spark
>Priority: Major
>  Labels: Avro, serializers
>
> `AvroSerializer`'s implementation, at least in `newConverter`, was not 100% 
> based on the `InternalRow` and `SpecializedGetters` interface. It assumes 
> many implementation details of the interface. 
> For example, in 
> ```scala
>       case (TimestampType, LONG) => avroType.getLogicalType match {
>           // For backward compatibility, if the Avro type is Long and it is 
> not logical type
>           // (the `null` case), output the timestamp value as with 
> millisecond precision.
>           case null | _: TimestampMillis => (getter, ordinal) =>
>             
> DateTimeUtils.microsToMillis(timestampRebaseFunc(getter.getLong(ordinal)))
>           case _: TimestampMicros => (getter, ordinal) =>
>             timestampRebaseFunc(getter.getLong(ordinal))
>           case other => throw new IncompatibleSchemaException(errorPrefix +
>             s"SQL type ${TimestampType.sql} cannot be converted to Avro 
> logical type $other")
>         }
> ```
> it assumes the `InternalRow` instance encodes `TimestampType` as 
> `java.lang.Long`. That's true for `Unsaferow` but not for 
> `GenericInternalRow`. 
> Hence the above code will end up with runtime exceptions when used on an 
> instance of `GenericInternalRow`, which is the case for Python UDF. 
> I didn't get time to dig deeper than that. I got the impression that Spark's 
> optimizer(s) will turn a row into a `UnsafeRow` and Python UDF doesn't 
> involve the optimizer(s) and hence each row is a `GenericInternalRow`. 
> It would be great if someone can correct me or offer a better explanation. 
>  
> To reproduce the issue, 
> `git checkout master` and `git cherry-pick --no-commit` 
> [this-commit|https://github.com/Zhen-hao/spark/commit/1ffe8e8f35273b2f3529f6c2d004822f480e4c88]
> and run the test `org.apache.spark.sql.avro.AvroSerdeSuite`.
>  
> You will see runtime exceptions like the following one
> ```
> - Serialize DecimalType to Avro BYTES with logical type decimal *** FAILED ***
>   java.lang.ClassCastException: class java.math.BigDecimal cannot be cast to 
> class org.apache.spark.sql.types.Decimal (java.math.BigDecimal is in module 
> java.base of loader 'bootstrap'; org.apache.spark.sql.types.Decimal is in 
> unnamed module of loader 'app')
>   at 
> org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getDecimal(rows.scala:45)
>   at 
> org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getDecimal$(rows.scala:45)
>   at 
> org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getDecimal(rows.scala:195)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.$anonfun$newConverter$10(AvroSerializer.scala:136)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.$anonfun$newConverter$10$adapted(AvroSerializer.scala:135)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.$anonfun$newStructConverter$2(AvroSerializer.scala:283)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.serialize(AvroSerializer.scala:60)
>   at 
> org.apache.spark.sql.avro.AvroSerdeSuite.$anonfun$new$5(AvroSerdeSuite.scala:82)
>   at 
> org.apache.spark.sql.avro.AvroSerdeSuite.$anonfun$new$5$adapted(AvroSerdeSuite.scala:67)
>   at 
> org.apache.spark.sql.avro.AvroSerdeSuite.$anonfun$withFieldMatchType$2(AvroSerdeSuite.scala:217)
> ```



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Assigned] (SPARK-38091) AvroSerializer can cause java.lang.ClassCastException at run time

2022-02-02 Thread Apache Spark (Jira)


 [ 
https://issues.apache.org/jira/browse/SPARK-38091?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Apache Spark reassigned SPARK-38091:


Assignee: (was: Apache Spark)

> AvroSerializer can cause java.lang.ClassCastException at run time
> -
>
> Key: SPARK-38091
> URL: https://issues.apache.org/jira/browse/SPARK-38091
> Project: Spark
>  Issue Type: Bug
>  Components: SQL
>Affects Versions: 3.0.0, 3.0.1, 3.0.2, 3.0.3, 3.1.0, 3.1.1, 3.1.2, 3.2.0, 
> 3.2.1
>Reporter: Zhenhao Li
>Priority: Major
>  Labels: Avro, serializers
>
> `AvroSerializer`'s implementation, at least in `newConverter`, was not 100% 
> based on the `InternalRow` and `SpecializedGetters` interface. It assumes 
> many implementation details of the interface. 
> For example, in 
> ```scala
>       case (TimestampType, LONG) => avroType.getLogicalType match {
>           // For backward compatibility, if the Avro type is Long and it is 
> not logical type
>           // (the `null` case), output the timestamp value as with 
> millisecond precision.
>           case null | _: TimestampMillis => (getter, ordinal) =>
>             
> DateTimeUtils.microsToMillis(timestampRebaseFunc(getter.getLong(ordinal)))
>           case _: TimestampMicros => (getter, ordinal) =>
>             timestampRebaseFunc(getter.getLong(ordinal))
>           case other => throw new IncompatibleSchemaException(errorPrefix +
>             s"SQL type ${TimestampType.sql} cannot be converted to Avro 
> logical type $other")
>         }
> ```
> it assumes the `InternalRow` instance encodes `TimestampType` as 
> `java.lang.Long`. That's true for `Unsaferow` but not for 
> `GenericInternalRow`. 
> Hence the above code will end up with runtime exceptions when used on an 
> instance of `GenericInternalRow`, which is the case for Python UDF. 
> I didn't get time to dig deeper than that. I got the impression that Spark's 
> optimizer(s) will turn a row into a `UnsafeRow` and Python UDF doesn't 
> involve the optimizer(s) and hence each row is a `GenericInternalRow`. 
> It would be great if someone can correct me or offer a better explanation. 
>  
> To reproduce the issue, 
> `git checkout master` and `git cherry-pick --no-commit` 
> [this-commit|https://github.com/Zhen-hao/spark/commit/1ffe8e8f35273b2f3529f6c2d004822f480e4c88]
> and run the test `org.apache.spark.sql.avro.AvroSerdeSuite`.
>  
> You will see runtime exceptions like the following one
> ```
> - Serialize DecimalType to Avro BYTES with logical type decimal *** FAILED ***
>   java.lang.ClassCastException: class java.math.BigDecimal cannot be cast to 
> class org.apache.spark.sql.types.Decimal (java.math.BigDecimal is in module 
> java.base of loader 'bootstrap'; org.apache.spark.sql.types.Decimal is in 
> unnamed module of loader 'app')
>   at 
> org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getDecimal(rows.scala:45)
>   at 
> org.apache.spark.sql.catalyst.expressions.BaseGenericInternalRow.getDecimal$(rows.scala:45)
>   at 
> org.apache.spark.sql.catalyst.expressions.GenericInternalRow.getDecimal(rows.scala:195)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.$anonfun$newConverter$10(AvroSerializer.scala:136)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.$anonfun$newConverter$10$adapted(AvroSerializer.scala:135)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.$anonfun$newStructConverter$2(AvroSerializer.scala:283)
>   at 
> org.apache.spark.sql.avro.AvroSerializer.serialize(AvroSerializer.scala:60)
>   at 
> org.apache.spark.sql.avro.AvroSerdeSuite.$anonfun$new$5(AvroSerdeSuite.scala:82)
>   at 
> org.apache.spark.sql.avro.AvroSerdeSuite.$anonfun$new$5$adapted(AvroSerdeSuite.scala:67)
>   at 
> org.apache.spark.sql.avro.AvroSerdeSuite.$anonfun$withFieldMatchType$2(AvroSerdeSuite.scala:217)
> ```



--
This message was sent by Atlassian Jira
(v8.20.1#820001)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org