[jira] [Commented] (SPARK-24204) Verify a write schema in Json/Orc/ParquetFileFormat

2018-05-21 Thread Apache Spark (JIRA)

[ 
https://issues.apache.org/jira/browse/SPARK-24204?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16483468#comment-16483468
 ] 

Apache Spark commented on SPARK-24204:
--

User 'maropu' has created a pull request for this issue:
https://github.com/apache/spark/pull/21389

> Verify a write schema in Json/Orc/ParquetFileFormat
> ---
>
> Key: SPARK-24204
> URL: https://issues.apache.org/jira/browse/SPARK-24204
> Project: Spark
>  Issue Type: Improvement
>  Components: SQL
>Affects Versions: 2.3.0
>Reporter: Takeshi Yamamuro
>Priority: Minor
>
> *SUMMARY*
> - CSV: Raising analysis exception.
> - JSON: dropping columns with null types
> - Parquet/ORC: raising runtime exceptions
> The native orc file format throws an exception with a meaningless message in 
> executor-sides when unsupported types passed;
> {code}
> scala> val rdd = spark.sparkContext.parallelize(List(Row(1, null), Row(2, 
> null)))
> scala> val schema = StructType(StructField("a", IntegerType) :: 
> StructField("b", NullType) :: Nil)
> scala> val df = spark.createDataFrame(rdd, schema)
> scala> df.write.orc("/tmp/orc")
> java.lang.IllegalArgumentException: Can't parse category at 
> 'struct'
> at 
> org.apache.orc.TypeDescription.parseCategory(TypeDescription.java:223)
> at org.apache.orc.TypeDescription.parseType(TypeDescription.java:332)
> at 
> org.apache.orc.TypeDescription.parseStruct(TypeDescription.java:327)
> at org.apache.orc.TypeDescription.parseType(TypeDescription.java:385)
> at org.apache.orc.TypeDescription.fromString(TypeDescription.java:406)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcSerializer.org$apache$spark$sql$execution$datasources$orc$OrcSerializer$$createOrcValue(OrcSerializ
> er.scala:226)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcSerializer.(OrcSerializer.scala:36)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcOutputWriter.(OrcOutputWriter.scala:36)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcFileFormat$$anon$1.newInstance(OrcFileFormat.scala:108)
> at 
> org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:376)
> at 
> org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:387)
> at 
> org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply
> (FileFormatWriter.scala:278)
> {code}
> It seems to be better to verify a write schema in a driver side for users 
> along with the CSV fromat;
> https://github.com/apache/spark/blob/76ecd095024a658bf68e5db658e4416565b30c17/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/csv/CSVFileFormat.scala#L65



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org



[jira] [Commented] (SPARK-24204) Verify a write schema in Json/Orc/ParquetFileFormat

2018-05-10 Thread Takeshi Yamamuro (JIRA)

[ 
https://issues.apache.org/jira/browse/SPARK-24204?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16471283#comment-16471283
 ] 

Takeshi Yamamuro commented on SPARK-24204:
--

ok, I'll do it later. Thanks for the description update, too.

> Verify a write schema in Json/Orc/ParquetFileFormat
> ---
>
> Key: SPARK-24204
> URL: https://issues.apache.org/jira/browse/SPARK-24204
> Project: Spark
>  Issue Type: Improvement
>  Components: SQL
>Affects Versions: 2.3.0
>Reporter: Takeshi Yamamuro
>Priority: Minor
>
> *SUMMARY*
> - CSV: Raising analysis exception.
> - JSON: dropping columns with null types
> - Parquet/ORC: raising runtime exceptions
> The native orc file format throws an exception with a meaningless message in 
> executor-sides when unsupported types passed;
> {code}
> scala> val rdd = spark.sparkContext.parallelize(List(Row(1, null), Row(2, 
> null)))
> scala> val schema = StructType(StructField("a", IntegerType) :: 
> StructField("b", NullType) :: Nil)
> scala> val df = spark.createDataFrame(rdd, schema)
> scala> df.write.orc("/tmp/orc")
> java.lang.IllegalArgumentException: Can't parse category at 
> 'struct'
> at 
> org.apache.orc.TypeDescription.parseCategory(TypeDescription.java:223)
> at org.apache.orc.TypeDescription.parseType(TypeDescription.java:332)
> at 
> org.apache.orc.TypeDescription.parseStruct(TypeDescription.java:327)
> at org.apache.orc.TypeDescription.parseType(TypeDescription.java:385)
> at org.apache.orc.TypeDescription.fromString(TypeDescription.java:406)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcSerializer.org$apache$spark$sql$execution$datasources$orc$OrcSerializer$$createOrcValue(OrcSerializ
> er.scala:226)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcSerializer.(OrcSerializer.scala:36)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcOutputWriter.(OrcOutputWriter.scala:36)
> at 
> org.apache.spark.sql.execution.datasources.orc.OrcFileFormat$$anon$1.newInstance(OrcFileFormat.scala:108)
> at 
> org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.newOutputWriter(FileFormatWriter.scala:376)
> at 
> org.apache.spark.sql.execution.datasources.FileFormatWriter$SingleDirectoryWriteTask.execute(FileFormatWriter.scala:387)
> at 
> org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask$3.apply
> (FileFormatWriter.scala:278)
> {code}
> It seems to be better to verify a write schema in a driver side for users 
> along with the CSV fromat;
> https://github.com/apache/spark/blob/76ecd095024a658bf68e5db658e4416565b30c17/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/csv/CSVFileFormat.scala#L65



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

-
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org